Treffer: Artificial intelligence in nephrology: predicting CKD progression and personalizing treatment.
Original Publication: Budapest, Akademiai Kiadó
Jha V et al (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382(9888):260–272. (PMID: 2372716910.1016/S0140-6736(13)60687-X)
Deng L et al (2025) Global, regional, and national burden of chronic kidney disease and its underlying etiologies from 1990 to 2021: a systematic analysis for the Global Burden of Disease Study 2021. BMC Public Health 25(1):636. (PMID: 399624431183176410.1186/s12889-025-21851-z)
Bikbov B et al (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. https://doi.org/10.1016/S0140-6736(20)30045-3. (PMID: 10.1016/S0140-6736(20)30045-3)
Stanifer JW, Muiru A, Jafar TH, Patel UD (2016) Chronic kidney disease in low-and middle-income countries. Nephrol Dial Transplant 31(6):868–874. (PMID: 27217391487696910.1093/ndt/gfv466)
Glaser J et al (2016) Climate change and the emergent epidemic of CKD from heat stress in rural communities: the case for heat stress nephropathy. Clin J Am Soc Nephrol 11(8):1472–1483. (PMID: 27151892497489810.2215/CJN.13841215)
Levey AS et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. (PMID: 19414839276356410.7326/0003-4819-150-9-200905050-00006)
Eneanya ND, Yang W, Reese PP (2019) Reconsidering the consequences of using race to estimate kidney function. JAMA 322(2):113–114. (PMID: 3116989010.1001/jama.2019.5774)
Inker LA et al (2021) New creatinine-and cystatin c–based equations to estimate GFR without race. N Engl J Med 385(19):1737–1749. (PMID: 34554658882299610.1056/NEJMoa2102953)
Levin A et al (2013) Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl (2011) 3(1):1–150.
Shlipak MG et al (2013) Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med 369(10):932–943. (PMID: 24004120399309410.1056/NEJMoa1214234)
Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27(3):363–373. (PMID: 2171352410.1007/s00467-011-1939-1)
Heerspink HJL et al (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383(15):1436–1446. (PMID: 3297039610.1056/NEJMoa2024816)
Perkovic V et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380(24):2295–2306. (PMID: 3099026010.1056/NEJMoa1811744)
Wheeler DC et al (2020) The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant 35(10):1700–1711. (PMID: 32862232753823510.1093/ndt/gfaa234)
Tangri N et al (2011) A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305(15):1553–1559. (PMID: 2148274310.1001/jama.2011.451)
Weiner SJ et al (2010) Contextual errors and failures in individualizing patient care: a multicenter study. Ann Intern Med 153(2):69–75. (PMID: 2064398810.7326/0003-4819-153-2-201007200-00002)
C. K. D. P. Consortium (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375(9731):2073–2081. (PMID: 10.1016/S0140-6736(10)60674-5)
Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25(1):44–56. (PMID: 3061733910.1038/s41591-018-0300-7)
Esteva A et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. (PMID: 28117445838223210.1038/nature21056)
Hannun AY et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25(1):65–69. (PMID: 30617320678483910.1038/s41591-018-0268-3)
Ouyang D et al (2020) Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802):252–256. (PMID: 32269341897957610.1038/s41586-020-2145-8)
Sabanayagam C et al (2020) A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Lancet Digit Health 2(6):e295–e302. (PMID: 3332812310.1016/S2589-7500(20)30063-7)
Tomašev N et al (2019) A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572(7767):116–119. (PMID: 31367026672243110.1038/s41586-019-1390-1)
Wosik J et al (2020) Telehealth transformation: COVID-19 and the rise of virtual care. J Am Med Inform Assoc 27(6):957–962. (PMID: 32311034718814710.1093/jamia/ocaa067)
Choudhury A, Asan O (2020) Role of artificial intelligence in patient safety outcomes: systematic literature review. JMIR Med Inform 8(7):e18599. (PMID: 32706688741441110.2196/18599)
Kather JN et al (2019) Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med 16(1):e1002730. (PMID: 30677016634544010.1371/journal.pmed.1002730)
Huang S-C, Pareek A, Seyyedi S, Banerjee I, Lungren MP (2020) Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit Med 3(1):136. (PMID: 33083571756786110.1038/s41746-020-00341-z)
Price WN, Cohen IG (2019) Privacy in the age of medical big data. Nat Med 25(1):37–43. (PMID: 30617331637696110.1038/s41591-018-0272-7)
Davenport T, Kalakota R (2019) The potential for artificial intelligence in healthcare. Future Healthc J 6(2):94–98. (PMID: 31363513661618110.7861/futurehosp.6-2-94)
Li W et al (2019) Privacy-preserving federated brain tumour segmentation. In: International workshop on machine learning in medical imaging. Springer, pp 133–141.
Chan L et al (2021) Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease. Diabetologia 64(7):1504–1515. (PMID: 33797560818720810.1007/s00125-021-05444-0)
Pan Q, Tong M (2024) Artificial intelligence in predicting chronic kidney disease prognosis. A systematic review and meta-analysis. Ren Fail 46(2):2435483. (PMID: 396631461163615510.1080/0886022X.2024.2435483)
Li C, Liu J, Fu P, Zou J (2025) Artificial intelligence models in diagnosis and treatment of kidney diseases: current status and prospects. Kidney Dis. https://doi.org/10.1159/000546397. (PMID: 10.1159/000546397)
Yoon M et al (2023) Application and potential of artificial intelligence in heart failure: past, present, and future. Int J Heart Fail 6(1):11. (PMID: 383039171082770410.36628/ijhf.2023.0050)
Rahman MDH et al (2025) Artificial intelligence for chronic kidney disease risk stratification in the USA: ensemble vs. deep learning methods. Br J Nurs Stud 5(2):20–32.
Fan Z et al (2023) Artificial intelligence can accurately distinguish IgA nephropathy from diabetic nephropathy under Masson staining and becomes an important assistant for renal pathologists. Front Med 10:1066125. (PMID: 10.3389/fmed.2023.1066125)
Mele M (2025) Study of the pathogenesis and treatment of heart failure through the harmonization of evidence-based clinical data, artificial intelligence and animal models.
Basuli D, Roy S (2023) Beyond human limits: harnessing artificial intelligence to optimize immunosuppression in kidney transplantation. J Clin Med Res 15(8–9):391. (PMID: 378228511056381910.14740/jocmr5012)
Thielemans R, Speeckaert R, Delrue C, De Bruyne S, Oyaert M, Speeckaert MM (2023) Unveiling the hidden power of uromodulin: a promising potential biomarker for kidney diseases. Diagnostics 13(19):3077. (PMID: 378358201057291110.3390/diagnostics13193077)
Alobaidi S (2025) Emerging biomarkers and advanced diagnostics in chronic kidney disease: early detection through multi-omics and AI. Diagnostics 15(10):1225. (PMID: 404282181211019110.3390/diagnostics15101225)
Vo D-K, Trinh KTL (2024) Advances in wearable biosensors for healthcare: current trends, applications, and future perspectives. Biosensors 14(11):560. (PMID: 395900191159225610.3390/bios14110560)
Wasilewski T, Kamysz W, Gębicki J (2024) Ai-assisted detection of biomarkers by sensors and biosensors for early diagnosis and monitoring. Biosensors 14(7):356. (PMID: 390566321127492310.3390/bios14070356)
Balakrishnan S et al (2025) Evaluating artificial intelligence bias in nephrology: the role of diversity, equity, and inclusion in AI-driven decision-making and ethical regulation. Front Artif Intell 8:1525937. (PMID: 404959291215087310.3389/frai.2025.1525937)
Kalusivalingam AK, Sharma A, Patel N, Singh V (2021) Leveraging federated learning and explainable AI for advancing health equity: a comprehensive approach to reducing disparities in healthcare access and outcomes. Int J AI ML 2(3):895–965.
Oualikene-Gonin W et al (2024) Artificial intelligence integration in the drug lifecycle and in regulatory science: policy implications, challenges and opportunities. Front Pharmacol 15:1437167. (PMID: 391561111132702810.3389/fphar.2024.1437167)
Hu F et al (2025) Innovation networks in the advanced medical equipment industry: supporting regional digital health systems from a local–national perspective. Front Public Health 13:1635475. (PMID: 408232281235041710.3389/fpubh.2025.1635475)
Rubinger L, Gazendam A, Ekhtiari S, Bhandari M (2023) Machine learning and artificial intelligence in research and healthcare. Injury 54:S69–S73. (PMID: 3513568510.1016/j.injury.2022.01.046)
Usuyama N, Wong C, Zhang S, Naumann T, Poon H (2025) Biomedical natural language processing in the era of large language models. Annu Rev Biomed Data Sci. https://doi.org/10.1146/annurev-biodatasci-103123-095406. (PMID: 10.1146/annurev-biodatasci-103123-09540640245359)
Xia K, Wang J (2023) Recent advances of transformers in medical image analysis: a comprehensive review. MedComm–Future Med 2(1):e38. (PMID: 10.1002/mef2.38)
Kautish SK, Dhiman G (2022) AI-enabled multiple-criteria decision-making approaches for healthcare management. IGI Global.
Sharma N, Kaushik P (2025) Integration of AI in healthcare systems—a discussion of the challenges and opportunities of integrating AI in healthcare systems for disease detection and diagnosis. AI Dis Detect Adv Appl 239–263.
Chen C, Isa NAM, Liu X (2025) A review of convolutional neural network based methods for medical image classification. Comput Biol Med 185:109507. (PMID: 3963110810.1016/j.compbiomed.2024.109507)
Mall PK et al (2023) A comprehensive review of deep neural networks for medical image processing: recent developments and future opportunities. Healthc Analyt 4:100216. (PMID: 10.1016/j.health.2023.100216)
Boll HO et al (2024) Graph neural networks for clinical risk prediction based on electronic health records: a survey. J Biomed Inform 151:104616. (PMID: 10.1016/j.jbi.2024.104616)
Hoyt G, Chatterjee N, Battaglia F, Basu P (2025) Medical applications of graph convolutional networks using electronic health records: a survey. arXiv preprint arXiv:2502.09781.
Li X-Q, Wang R-Q, Wu L-Q, Chen D-M (2024) Transfer learning-enabled outcome prediction for guiding CRRT treatment of the pediatric patients with sepsis. BMC Med Inform Decis Mak 24(1):266. (PMID: 393342611142915410.1186/s12911-024-02623-y)
Badawy M, Almars AM, Balaha HM, Shehata M, Qaraad M, Elhosseini M (2023) A two-stage renal disease classification based on transfer learning with hyperparameters optimization. Front Med Lausanne 10:1106717. (PMID: 370895981011350510.3389/fmed.2023.1106717)
Tsai M-C, Lu HH-S, Chang Y-C, Huang Y-C, Fu L-S (2022) Automatic screening of pediatric renal ultrasound abnormalities: deep learning and transfer learning approach. JMIR Med Inform 10(11):e40878. (PMID: 36322109966988710.2196/40878)
Schubert MC, Lasotta M, Sahm F, Wick W, Venkataramani V (2023) Evaluating the multimodal capabilities of generative AI in complex clinical diagnostics. Medrxiv 45:2011–2023.
Boadla MER et al (2024) Multimodal cardiac imaging revisited by artificial intelligence: an innovative way of assessment or just an aid?. Cureus 16(7).
Yang H et al (2025) Multi-modal explainable medical AI assistant for trustworthy human-AI collaboration. arXiv preprint arXiv:2505.06898.
Sabanayagam C et al (2025) Artificial intelligence in chronic kidney disease management: a scoping review. Theranostics 15(10):4566. (PMID: 402255591198440810.7150/thno.108552)
Henry EU, Emebob O, Omonhinmin CA (2022) Vision transformers in medical imaging: a review. arXiv preprint arXiv:2211.10043.
Ono S, Goto T (2022) Introduction to supervised machine learning in clinical epidemiology. Ann Clin Epidemiol 4(3):63–71. (PMID: 385049451076049210.37737/ace.22009)
An Q, Rahman S, Zhou J, Kang JJ (2023) A comprehensive review on machine learning in healthcare industry: classification, restrictions, opportunities and challenges. Sensors 23(9):4178. (PMID: 371773821018067810.3390/s23094178)
Eicher T et al (2020) Metabolomics and multi-omics integration: a survey of computational methods and resources. Metabolites 10(5):202. (PMID: 32429287728143510.3390/metabo10050202)
Ghosh S, Zhao X, Alim M, Brudno M, Bhat M (2025) Artificial intelligence applied to ‘omics data in liver disease: towards a personalised approach for diagnosis, prognosis and treatment. Gut 74(2):295–311. (PMID: 3917430710.1136/gutjnl-2023-331740)
Abdel-Jaber H, Devassy D, Al Salam A, Hidaytallah L, El-Amir M (2022) A review of deep learning algorithms and their applications in healthcare. Algorithms 15(2):71. (PMID: 10.3390/a15020071)
Zhang G, Ou S-X, Huang Y-H, Wang C-R (2015) Semi-supervised learning methods for large scale healthcare data analysis. Int J Comput Healthc 2(2):98–110. (PMID: 10.1504/IJCIH.2015.069788)
Beaulieu-Jones BK, Greene CS, P. R. O.-A. A. L. S. C. T. Consortium (2016) Semi-supervised learning of the electronic health record for phenotype stratification. J Biomed Inform 64:168–178. (PMID: 2774402210.1016/j.jbi.2016.10.007)
Quanz B, Huan J (2009) Large margin transductive transfer learning. In: Proceedings of the 18th ACM conference on Information and knowledge management, pp 1327–1336.
Bernardini M, Romeo L, Frontoni E, Amini M-R (2021) A semi-supervised multi-task learning approach for predicting short-term kidney disease evolution. IEEE J Biomed Health Inform 25(10):3983–3994. (PMID: 3387799010.1109/JBHI.2021.3074206)
Klamrowski MM et al (2024) Derivation and validation of a machine learning model for the prevention of unplanned dialysis. Clin J Am Soc Nephrol 19(9):1098–1108. (PMID: 387876171139002410.2215/CJN.0000000000000489)
Woldaregay AZ, Årsand E, Botsis T, Albers D, Mamykina L, Hartvigsen G (2019) Data-driven blood glucose pattern classification and anomalies detection: machine-learning applications in type 1 diabetes. J Med Internet Res 21(5):e11030. (PMID: 31042157665832110.2196/11030)
Singh RP, Hom GL, Abramoff MD, Campbell JP, Chiang MF (2020) Current challenges and barriers to real-world artificial intelligence adoption for the healthcare system, provider, and the patient. Transl Vis Sci Technol 9(2):45. (PMID: 32879755744311510.1167/tvst.9.2.45)
Frommeyer TC et al (2025) Reinforcement learning and its clinical applications within healthcare: a systematic review of precision medicine and dynamic treatment regimes. Healthcare. https://doi.org/10.3390/healthcare13141752. (PMID: 10.3390/healthcare131417524072477712295150)
Jayaraman P, Desman J, Sabounchi M, Nadkarni GN, Sakhuja A (2024) A primer on reinforcement learning in medicine for clinicians. NPJ Digit Med 7(1):337. (PMID: 395928551159927510.1038/s41746-024-01316-0)
Witowski J et al (2022) Improving breast cancer diagnostics with deep learning for MRI. Sci Transl Med 14(664):eabo4802. (PMID: 361704461032369910.1126/scitranslmed.abo4802)
Lotter W, Hassett MJ, Schultz N, Kehl KL, Van Allen EM, Cerami E (2024) Artificial intelligence in oncology: current landscape, challenges, and future directions. Cancer Discov 14(5):711–726. (PMID: 385979661113113310.1158/2159-8290.CD-23-1199)
Khatiwada P, Yang B, Lin J-C, Blobel B (2024) Patient-generated health data (PGHD): understanding, requirements, challenges, and existing techniques for data security and privacy. J Pers Med 14(3):282. (PMID: 385410241097163710.3390/jpm14030282)
Gariépy-Saper K, Decarie N (2021) Privacy of electronic health records: a review of the literature. J Can Health Libr Assoc 42(1):74. (PMID: 35949500932760910.29173/jchla29496)
Huang J-D, Wang J, Ramsey E, Leavey G, Chico TJA, Condell J (2022) Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: a review. Sensors (Basel) 22(20):8002. (PMID: 3629835210.3390/s22208002)
Zhang S, Wu L, Zhao Z, Massó JRF, Chen M (2024) Artificial intelligence in gerontology: data-driven health management and precision medicine. Adv Gerontol 14(3):97–110. (PMID: 10.1134/S2079057024600691)
Ghosh BP, Sohail A (2025) Advancing early cancer detection through secure cloud data management and artificial intelligence. Multidiscip Innov Res Anal 6(2):19–34.
Fahmy AM. Exploring the role of AI in predicting chronic disease progression: diabetes and cardiovascular diseases. Methodology 2:3.
Anoch B, Parthiban L (2025) Uncertainty-aware AI for enhanced chronic kidney disease diagnosis: a review of explainable and reliable models. In: 2025 International conference on computational robotics, testing and engineering evaluation (ICCRTEE), IEEE, pp 1–6.
Kuo C-C et al (2019) Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digit Med 2(1):29. (PMID: 31304376655022410.1038/s41746-019-0104-2)
Cross JL, Choma MA, Onofrey JA (2024) Bias in medical AI: implications for clinical decision-making. PLoS Digit Health 3(11):e0000651. (PMID: 395094611154277810.1371/journal.pdig.0000651)
Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A (2021) Addressing bias in big data and AI for health care: a call for open science. Patterns. https://doi.org/10.1016/j.patter.2021.100347. (PMID: 10.1016/j.patter.2021.100347346933738515002)
Yang J, Soltan AAS, Clifton DA (2022) Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening. NPJ Digit Med 5(1):69. (PMID: 35672368917415910.1038/s41746-022-00614-9)
Choi SY, Kim JH, Chung HS, Lim S, Kim EH, Choi A (2024) Impact of a deep learning-based brain CT interpretation algorithm on clinical decision-making for intracranial hemorrhage in the emergency department. Sci Rep 14(1):22292. (PMID: 393333291143691110.1038/s41598-024-73589-0)
Savage CH et al (2024) Prospective evaluation of artificial intelligence triage of intracranial hemorrhage on noncontrast head CT examinations. AJR Am J Roentgenol 223(5):e2431639. (PMID: 3923040210.2214/AJR.24.31639)
Hu P et al (2024) Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis. Int J Surg 110(6):3839–3847. (PMID: 384895471117574110.1097/JS9.0000000000001266)
Shimgekar SR, Vassef S, Goyal A, Kumar N, Saha K (2025) Agentic AI framework for End-to-End Medical Data Inference. arXiv preprint arXiv:2507.18115.
Suryanarayanan P et al (2021) Timely and efficient AI insights on EHR: system design. In: AMIA annual symposium proceedings, p 1180.
Zhang J, Kowsari K, Harrison JH, Lobo JM, Barnes LE (2018) Patient2vec: a personalized interpretable deep representation of the longitudinal electronic health record. IEEE Access 6:65333–65346. (PMID: 10.1109/ACCESS.2018.2875677)
Corbin CK et al (2023) DEPLOYR: a technical framework for deploying custom real-time machine learning models into the electronic medical record. J Am Med Inform Assoc 30(9):1532–1542. (PMID: 373690081043614710.1093/jamia/ocad114)
Gerke S, Babic B, Evgeniou T, Cohen IG (2020) The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. NPJ Digit Med 3(1):53. (PMID: 32285013713881910.1038/s41746-020-0262-2)
Beckers R, Kwade Z, Zanca F (2021) The EU medical device regulation: implications for artificial intelligence-based medical device software in medical physics. Phys Med 83:1–8. (PMID: 3365751310.1016/j.ejmp.2021.02.011)
U. S. F. and D. Administration (2022) Artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD) Action Plan. FDA US food & drug administration center for devices & radiological health.
Chen IY, Joshi S, Ghassemi M (2020) Treating health disparities with artificial intelligence. Nat Med 26(1):16–17. (PMID: 3193277910.1038/s41591-019-0649-2)
Saleiro P et al (2018) Aequitas: a bias and fairness audit toolkit. arXiv preprint arXiv:1811.05577.
Vokinger KN, Feuerriegel S, Kesselheim AS (2021) Mitigating bias in machine learning for medicine. Commun Med 1(1):25. (PMID: 34522916761165210.1038/s43856-021-00028-w)
Tonekaboni S, Joshi S, McCradden MD, Goldenberg A (2019) What clinicians want: contextualizing explainable machine learning for clinical end use. In: Machine learning for healthcare conference, PMLR, pp 359–380.
Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N (2015) Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1721–1730.
Buolamwini J, Gebru T (2018) Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on fairness, accountability and transparency, PMLR, pp 77–91.
Leslie D, Burr C, Aitken M, Cowls J, Katell M, Briggs M (2021) Artificial intelligence, human rights, democracy, and the rule of law: a primer. arXiv preprint arXiv:2104.04147.
Dankar FK, El Emam K (2012) The application of differential privacy to health data. In: Proceedings of the 2012 joint EDBT/ICDT workshops, pp 158–166.
Sheller MJ et al (2020) Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep 10(1):12598. (PMID: 32724046738748510.1038/s41598-020-69250-1)
Uzuner Ö, Luo Y, Szolovits P (2007) Evaluating the state-of-the-art in automatic de-identification. J Am Med Inform Assoc 14(5):550–563. (PMID: 17600094197579210.1197/jamia.M2444)
Reddy S, Allan S, Coghlan S, Cooper P (2020) A governance model for the application of AI in health care. J Am Med Inform Assoc 27(3):491–497. (PMID: 3168226210.1093/jamia/ocz192)
Wang Y, Nguyen FNHL, Allen JC, Lew JQL, Tan NC, Jafar TH (2019) Validation of the kidney failure risk equation for end-stage kidney disease in Southeast Asia. BMC Nephrol 20(1):451. (PMID: 31801468689411710.1186/s12882-019-1643-0)
Tangri N et al (2016) Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA 315(2):164–174. (PMID: 26757465475216710.1001/jama.2015.18202)
Grams ME et al (2023) The kidney failure risk equation: evaluation of novel input variables including eGFR estimated using the CKD-EPI 2021 equation in 59 cohorts. J Am Soc Nephrol 34(3):482–494. (PMID: 368575001010320510.1681/ASN.0000000000000050)
Dritsas E, Trigka M (2022) Machine learning techniques for chronic kidney disease risk prediction. Big Data Cogn Comput 6(3):98. (PMID: 10.3390/bdcc6030098)
Pesce F et al (2024) International nephrology masterclass in chronic kidney disease: rationale, summary, and future perspectives. Life 14(12):1668. (PMID: 397683751167753610.3390/life14121668)
Suresh H, Guttag J (2021) A framework for understanding sources of harm throughout the machine learning life cycle. In: Proceedings of the 1st ACM conference on equity and access in algorithms, mechanisms, and optimization, pp 1–9.
Sun M, Engelhard MM, Bedoya AD, Goldstein BA (2024) Incorporating informatively collected laboratory data from EHR in clinical prediction models. BMC Med Inform Decis Mak 24(1):206. (PMID: 390490491127088710.1186/s12911-024-02612-1)
Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2021) A survey on bias and fairness in machine learning. ACM Comput Surv 54(6):1–35. (PMID: 10.1145/3457607)
Ramspek CL. Predicting outcomes in patients ith kidne disease: methodolog and clinical applications.
Cai R, Wu X, Li C, Chao J (2020) Prediction models for cardiovascular disease risk in the hypertensive population: a systematic review. J Hypertens 38(9):1632–1639. (PMID: 3225120010.1097/HJH.0000000000002442)
Salameh J-P et al (2020) Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist. BMJ 370:54–85.
Moons KGM et al (2022) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Translation in to Russian. Digit Diagn 3(3):232–322. (PMID: 10.17816/DD110794)
Yuan Q et al (2020) Role of artificial intelligence in kidney disease. Int J Med Sci 17(7):970. (PMID: 32308551716336410.7150/ijms.42078)
Rani R, Gill KS, Upadhyay D, Devliyal S (2024) XGBoost-driven insights: enhancing chronic kidney disease detection. In: 2024 5th international conference on smart electronics and communication (ICOSEC), IEEE, pp 1131–1134.
Shaji AK, Sithara R, Suryamol S, Adersh PB, Varghese T. Chronic kidney disease prognostication utilizing hybrid ensemble learning.
Foozy CFM, Anuar MAI, Maslan A, Adam HAM, Mahdin H (2024) Phishing urls detection using Naives Baiyes, Random Forest and LightGBM algorithms. Int J Data Sci 5(1):56–63. (PMID: 10.18517/ijods.5.1.56-63.2024)
Yashwante P, Patil Y, Nadar K, Khade A (2024) Comparative analysis of meta-heuristic feature selection and feature extraction approaches for enhanced chronic kidney disease prediction. In: 2024 IEEE international conference on interdisciplinary approaches in technology and management for social innovation (IATMSI), IEEE, pp 1–6.
Lin S-W, Chen S-C (2009) PSOLDA: a particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis. Appl Soft Comput 9(3):1008–1015. (PMID: 10.1016/j.asoc.2009.01.001)
Saeys Y, Abeel T, Van de Peer Y (2008) Robust feature selection using ensemble feature selection techniques. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 313–325.
Wahono RS, Suryana N, Ahmad S (2014) Metaheuristic optimization based feature selection for software defect prediction. J Softw 9(5):1324–1333. (PMID: 10.4304/jsw.9.5.1324-1333)
Khosravi H, Das S, Al-Mamun A, Ahmed I (2024) Binary gaussian copula synthesis: a novel data augmentation technique to advance ml-based clinical decision support systems for early prediction of dialysis among CKD patients. arXiv preprint arXiv:2403.00965.
da Silveira ACM, Sobrinho Á, da Silva LD, de B. Costa E, Pinheiro ME, Perkusich A (2022) Exploring early prediction of chronic kidney disease using machine learning algorithms for small and imbalanced datasets. Appl Sci 12(7):3673. (PMID: 10.3390/app12073673)
Douzas G, Bacao F, Last F (2018) Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf Sci 465:1–20. (PMID: 10.1016/j.ins.2018.06.056)
Desoky M, ElAdl NG, Abuhmed T, El-Sappagh S (2025) Chronic kidney disease detection augmented with hybrid explainable AI. In: 2025 15th international conference on electrical engineering (ICEENG), IEEE, pp 1–6.
Falvo FR, Cannataro M (2024) Explainability techniques for Artificial Intelligence models in medical diagnostic. In: 2024 IEEE international conference on bioinformatics and biomedicine (BIBM), IEEE, pp 6907–6913.
Mridha K, Wang M, Zhang L (2025) Building trust in clinical AI: a web-based explainable decision support system for chronic kidney disease. AMIA Summ Transl Sci Proc 2025:375.
ElShawi R, Sherif Y, Al-Mallah M, Sakr S (2021) Interpretability in healthcare: a comparative study of local machine learning interpretability techniques. Comput Intell 37(4):1633–1650. (PMID: 10.1111/coin.12410)
Boutilier JJ, Chan TCY, Ranjan M, Deo S (2021) Risk stratification for early detection of diabetes and hypertension in resource-limited settings: machine learning analysis. J Med Internet Res 23(1):e20123. (PMID: 33475518786200310.2196/20123)
Sarma KV et al (2021) Federated learning improves site performance in multicenter deep learning without data sharing. J Am Med Inform Assoc 28(6):1259–1264. (PMID: 33537772820026810.1093/jamia/ocaa341)
Liu T, Krentz A, Lu L, Curcin V (2025) Machine learning based prediction models for cardiovascular disease risk using electronic health records data: systematic review and meta-analysis. Eur Heart J Digit Health 6(1):7–22. (PMID: 3984606210.1093/ehjdh/ztae080)
Liu W et al (2023) Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: a systematic review and meta-analysis. Eur Heart J-Qual Care Clin Outcomes 9(4):310–322. (PMID: 3686980010284268)
Gupta AK et al (2025) Machine-learning versus traditional approaches to predict all-cause mortality for acute coronary syndrome: a systematic review and meta-analysis. Can J Cardiol.
Shi P, Fu C (2024) Time-dependent LSTM for survival prediction and patient subtyping in kidney disease trajectory. medRxiv 2024–2029.
Rastegari F, Odeh M, Baroughi RM, Bustan A (2023) Predictive modeling of chronic kidney disease progression using longitudinal clinical data and deep learning techniques. In: 2023 2nd international engineering conference on electrical, energy, and artificial intelligence (EICEEAI), IEEE, pp 1–4.
Zisser M, Aran D (2024) Transformer-based time-to-event prediction for chronic kidney disease deterioration. J Am Med Inform Assoc 31(4):980–990. (PMID: 383498501099054710.1093/jamia/ocae025)
Thaney R, Shivani S, Nallarasan V (2024) Chronic kidney disease detection using deep learning models. In: 2024 international conference on distributed systems, computer networks and cybersecurity (ICDSCNC), IEEE, pp 1–6.
Manju VN, Harshitha N, Joshitha M, Jagrut SR, Krishna Sowjanya K (2024) Integrating ensemble and classical ML models for predicting CKD. In: 2024 Asia Pacific conference on innovation in technology (APCIT), IEEE, pp 1–6.
Pranay P, Reddy MR, Sharma KV (2023) Advancing chronic kidney disease diagnosis: a predictive model using random forest classifier. Int J Comput Eng Res Trends 10(10):1–7. (PMID: 10.22362/ijcert/2023/v10/i10/v10i101)
Hoang AT et al (2024) Personalised prediction of maintenance dialysis initiation in patients with chronic kidney disease stages 3–5: a multicentre study using the machine learning approach. BMJ Health Care Inform 31(1):e100893. (PMID: 386777741105726610.1136/bmjhci-2023-100893)
Yogalakshmi S, Anitha M (2025) A hybrid deep learning approach for chronic kidney disease detection using convolutional neural networks and support vector machines. In: 2025 international conference on inventive computation technologies (ICICT), IEEE, pp 620–625.
Li Y et al (2022) Hi-BEHRT: hierarchical transformer-based model for accurate prediction of clinical events using multimodal longitudinal electronic health records. IEEE J Biomed Health Inform 27(2):1106–1117. (PMID: 10.1109/JBHI.2022.3224727)
Iqbal S, Qureshi AN, Alhussein M, Aurangzeb K, Zubair M, Hussain A (2025) A novel reciprocal domain adaptation neural network for enhanced diagnosis of chronic kidney disease. Expert Syst 42(2):e13825. (PMID: 10.1111/exsy.13825)
Mahmoud AS, Lamouchi O, Belghith S (2024) Advancements in machine learning and deep learning for early diagnosis of chronic kidney diseases: a comprehensive review. Babylonian J Mach Learn 2024:149–156. (PMID: 10.58496/BJML/2024/015)
Simeri A et al (2025) Artificial intelligence in chronic kidney diseases: methodology and potential applications. Int Urol Nephrol 57(1):159–168. (PMID: 3905216810.1007/s11255-024-04165-8)
Ali H (2023) Artificial intelligence in multi-omics data integration: advancing precision medicine, biomarker discovery and genomic-driven disease interventions. Int J Sci Res Arch 8(1):1012–1030. (PMID: 10.30574/ijsra.2023.8.1.0189)
Lopes MB et al (2025) The omics-driven machine learning path to cost-effective precision medicine in chronic kidney disease. Proteomics. https://doi.org/10.1002/pmic.202400108. (PMID: 10.1002/pmic.2024001083980018612205302)
Rroji M, Spasovski G (2025) Omics studies in CKD: diagnostic opportunities and therapeutic potential. Proteomics 25(11–12):e202400151. (PMID: 3952393110.1002/pmic.202400151)
Peng Q, Zhang H, Li Z (2025) Methyltransferase-like 16 drives diabetic nephropathy progression via epigenetic suppression of V-set pre-B cell surrogate light chain 3. Life Sci. https://doi.org/10.1016/j.lfs.2025.123694. (PMID: 10.1016/j.lfs.2025.12369441187899)
Rizvi MS, Kashani KB (2017) Biomarkers for early detection of acute kidney injury. J Appl Lab Med 2(3):386–399. (PMID: 3363684210.1373/jalm.2017.023325)
Yang H, Chen Y, He J, Li Y, Feng Y (2025) Advances in the diagnosis of early biomarkers for acute kidney injury: a literature review. BMC Nephrol 26(1):115. (PMID: 400452741188407810.1186/s12882-025-04040-3)
Kashani K, Cheungpasitporn W, Ronco C (2017) Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med CCLM 55(8):1074–1089. (PMID: 2807631110.1515/cclm-2016-0973)
Kang M, Ko E, Mersha TB (2022) A roadmap for multi-omics data integration using deep learning. Brief Bioinform 23(1):bbab454. (PMID: 3479101410.1093/bib/bbab454)
Martinou E, Pericleous M, Stefanova I, Kaur V, Angelidi AM (2022) Diagnostic modalities of non-alcoholic fatty liver disease: from biochemical biomarkers to multi-omics non-invasive approaches. Diagnostics 12(2):407. (PMID: 35204498887147010.3390/diagnostics12020407)
Peng Q, Zhang H, Li Z (2025) KAT2A-mediated H3K79 succinylation promotes ferroptosis in diabetic nephropathy by regulating SAT2. Life Sci. https://doi.org/10.1016/j.lfs.2025.123746. (PMID: 10.1016/j.lfs.2025.12374641187899)
Wang X, Fridley BL (2023) Multi-omics data deconvolution and integration: new methods, insights, and translational implications. In: Statistical genomics. Springer, pp 1–9.
Vandereyken K, Sifrim A, Thienpont B, Voet T (2023) Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet 24(8):494–515. (PMID: 3686417810.1038/s41576-023-00580-2)
Zuo C, Zhu J, Zou J, Chen L (2025) Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data. Clin Transl Med 15(5):e70331. (PMID: 403417891205921110.1002/ctm2.70331)
Khalid F et al (2024) Predicting the progression of chronic kidney disease: a systematic review of artificial intelligence and machine learning approaches. Cureus 16(5).
Yao L et al (2021) Application of artificial intelligence in renal disease. Clin eHealth 4:54–61. (PMID: 10.1016/j.ceh.2021.11.003)
Loftus TJ et al (2022) Artificial intelligence-enabled decision support in nephrology. Nat Rev Nephrol 18(7):452–465. (PMID: 35459850937937510.1038/s41581-022-00562-3)
Fu Z et al (2024) Development and deployment of a nationwide predictive model for chronic kidney disease progression in diabetic patients. Front Nephrol 3:1237804. (PMID: 382600551080069310.3389/fneph.2023.1237804)
Ta AWA, Goh HL, Ang C, Koh LY, Poon K, Miller SM (2022) Two Singapore public healthcare AI applications for national screening programs and other examples. Health Care Sci 1(2):41–57. (PMID: 389388901108068110.1002/hcs2.10)
Wang SCY, Nickel G, Venkatesh KP, Raza MM, Kvedar JC (2024) AI-based diabetes care: risk prediction models and implementation concerns. NPJ Digit Med 7(1):36. (PMID: 383611521086970810.1038/s41746-024-01034-7)
Puri V, Priyadarshini I, Kataria A, Rani S, Min H (2025) Privacy-first ML for chronic kidney disease prediction: exploring a decentralized approach using blockchain and IPFS. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3548645. (PMID: 10.1109/ACCESS.2025.3548645)
Gogoi P, Valan JA (2025) Machine learning approaches for predicting and diagnosing chronic kidney disease: current trends, challenges, solutions, and future directions. Int Urol Nephrol 57(4):1245–1268. (PMID: 3956085710.1007/s11255-024-04281-5)
Burckhardt P, Nagin DS, Padman R (2017), Multi-trajectory models of chronic kidney disease progression. In: AMIA annual symposium proceedings, p 1737.
Imran Ali S et al (2020) Cost-sensitive ensemble feature ranking and automatic threshold selection for chronic kidney disease diagnosis. Appl Sci 10(16):5663. (PMID: 10.3390/app10165663)
Hema K, Meena K, Pandian R (2024) Analyze the impact of feature selection techniques in the early prediction of CKD. Int J Cognit Comput Eng 5:66–77.
Ekundayo F (2024) Machine learning for chronic kidney disease progression modelling: leveraging data science to optimize patient management. World J Adv Res Rev 24(03):453–475. (PMID: 10.30574/wjarr.2024.24.3.3730)
Leffondre K, Boucquemont J, Tripepi G, Stel VS, Heinze G, Dunkler D (2015) Analysis of risk factors associated with renal function trajectory over time: a comparison of different statistical approaches. Nephrol Dial Transplant 30(8):1237–1243. (PMID: 2532647110.1093/ndt/gfu320)
Rao S et al (2020) BEHRT-HF: an interpretable transformer-based, deep learning model for prediction of incident heart failure. Eur Heart J 41(2):3553.
Akter S et al (2021) Comprehensive performance assessment of deep learning models in early prediction and risk identification of chronic kidney disease. IEEE Access 9:165184–165206. (PMID: 10.1109/ACCESS.2021.3129491)
Busi RAL, Meka JS, Reddy P (2023) A hybrid deep learning technique for feature selection and classification of chronic kidney disease. Int J Intell Eng Syst 16(6):528–654.
Surekha Y, Valan JA (2025) Systematic review on chronic kidney disease detection using deep learning. In: 2025 international conference on inventive computation technologies (ICICT), IEEE, pp 143–151.
Dutta S, Sikder R, Islam MR, AlMukaddim A, Hider MA, Nasiruddin M (2024) Comparing the effectiveness of machine learning algorithms in early chronic kidney disease detection. J Comput Sci Technol Stud 6(4):77–91. (PMID: 10.32996/jcsts.2024.6.4.11)
Dhilsath Fathima M, Hariharan R, Raja SP (2023) Multiple imputation by chained equations-K-nearest neighbors and deep neural network architecture for kidney disease prediction. Int J Image Graph 23(02):2350014. (PMID: 10.1142/S0219467823500146)
Singh P, Chandola V, Fox C (2017) Automatic extraction of deep phenotypes for precision medicine in chronic kidney disease. In: Proceedings of the 2017 international conference on digital health, pp 195–199.
Zhou X, Dhingra LS, Aminorroaya A, Adejumo P, Khera R (2025) A novel sentence transformer-based natural language processing approach for schema mapping of electronic health records to the OMOP common data model. In: AMIA annual symposium proceedings, p 1332.
Kumar S, Arnold M, James G, Padman R (2022) Developing a common data model approach for DISCOVER CKD: a retrospective, global cohort of real-world patients with chronic kidney disease. PLoS ONE 17(9):e0274131. (PMID: 36173958952192610.1371/journal.pone.0274131)
Kirchler M, Ferro M, Lorenzini V, Lippert C, Ganna A (2025) Large language models improve transferability of electronic health record-based predictions across countries and coding systems. medRxiv.
Hunter B et al (2024) Optimising a clinical decision support tool to improve chronic kidney disease management in general practice. BMC Prim Care 25(1):220. (PMID: 388984621118618310.1186/s12875-024-02470-w)
Zhou X-J, Zhong X-H, Duan L-X (2023) Integration of artificial intelligence and multi-omics in kidney diseases. Fundam Res 3(1):126–148. (PMID: 3893356410.1016/j.fmre.2022.01.037)
Chowdari DL, Reddy KVK (2025) Optimizing chronic kidney disease detection through multi-modal data fusion using CNN-MLP architectures. In: 2025 international conference on inventive computation technologies (ICICT), IEEE, pp 1240–1247.
Ma D et al (2021) Prediction of chronic kidney disease risk using multimodal data. In: Proceedings of the 2021 5th international conference on computer and data analysis, pp 20–25.
Menon R et al (2023) Defining the molecular correlate of arteriolar hyalinosis in kidney disease progression by integration of single cell transcriptomic analysis and pathology scoring. medRxiv 12:2023–2026.
Xu W-X et al (2024) The burgeoning significance of liquid-liquid phase separation in the pathogenesis and therapeutics of cancers. Int J Biol Sci 20(5):1652. (PMID: 384818121092918410.7150/ijbs.92988)
Li X-P et al (2023) The emerging role of super-enhancers as therapeutic targets in the digestive system tumors. Int J Biol Sci 19(4):1036. (PMID: 369239301000868510.7150/ijbs.78535)
Ogier du Terrail J et al (2023) Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer. Nat Med 29(1):135–146. (PMID: 3665841810.1038/s41591-022-02155-w)
Süwer S, Ullah MS, Probul N, Maier A, Baumbach J (2024) Privacy-by-design with federated learning will drive future rare disease research. J Neuromuscul Dis 41:22143602241296276. (PMID: 10.1177/22143602241296276)
Silva RS et al (2021) Phenotypic characterization of chronic kidney patients through hierarchical clustering. In: 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC), IEEE, pp 2451–2454.
Antony L et al (2021) A comprehensive unsupervised framework for chronic kidney disease prediction. IEEE Access 9:126481–126501. (PMID: 10.1109/ACCESS.2021.3109168)
Zheng Z et al (2021) Subtyping CKD patients by consensus clustering: the chronic renal insufficiency cohort (CRIC) study. J Am Soc Nephrol 32(3):639–653. (PMID: 33462081792017810.1681/ASN.2020030239)
Sakil MBH, Hasan MA, Mozumder MSA, Hasan MR, Opee SA, Maua J (2025) A transformer and graph-based multi-task learning for optimized decision-making in chronic kidney disease management. In: 2025 international conference on intelligent computing and control systems (ICICCS), IEEE, pp 703–708.
Chauhan K et al (2020) Initial validation of a machine learning-derived prognostic test (KidneyIntelX) integrating biomarkers and electronic health record data to predict longitudinal kidney outcomes. Kidney360 1(8):731–739. (PMID: 35372952881574610.34067/KID.0002252020)
Chan L et al (2020) 499-P: clinical validation of an AI-enabled prognostic test (KidneyintelX) to accurately predict rapid kidney function decline in patients with type 2 diabetic kidney disease. Diabetes 69(Supplemetn_1):499-P. (PMID: 10.2337/db20-499-P)
Qin Y, Xuan L, Wu Z, Deng Y, Liu B, Wang S (2024) Use of consensus clustering to identify distinct subtypes of chronic kidney disease and associated mortality risk. Sci Rep 14(1):1–12. (PMID: 10.1038/s41598-024-81208-1)
Shang N et al (2021) Medical records-based chronic kidney disease phenotype for clinical care and ‘big data’ observational and genetic studies. NPJ Digit Med 4(1):70. (PMID: 33850243804413610.1038/s41746-021-00428-1)
Nadkarni GN et al (2014) Development and validation of an electronic phenotyping algorithm for chronic kidney disease. In: AMIA annual symposium proceedings, p 907.
Beige J, Masanneck M (2024) (Prote) omics for superior management of kidney and cardiovascular disease—a thought-provoking impulse from nephrology. Proteomics. https://doi.org/10.1002/pmic.202400143. (PMID: 10.1002/pmic.20240014339580683)
Jamthikar AD et al (2020) Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. Int Angiol 40(2):150–164. (PMID: 33236868)
Lenart M, Mascarenhas N, Xiong R, Flower A (2016) Identifying risk of progression for patients with Chronic Kidney Disease using clustering models. In: 2016 IEEE systems and information engineering design symposium (SIEDS), IEEE, pp 221–226.
Delrue C, Speeckaert MM (2024) Decoding kidney pathophysiology: omics-driven approaches in precision medicine. J Pers Med 14(12):1157. (PMID: 397280691167925810.3390/jpm14121157)
Provenzano M et al (2021) OMICS in chronic kidney disease: focus on prognosis and prediction. Int J Mol Sci 23(1):336. (PMID: 35008760874534310.3390/ijms23010336)
Al-Mamun MA, Jeun KJ, Brothers T, Asare EO, Shawwa K, Ahmed I (2025) Evaluating the kidney disease progression using a comprehensive patient profiling algorithm: a hybrid clustering approach. PLoS ONE 20(7):e0310749. (PMID: 406443871225058210.1371/journal.pone.0310749)
Fiorentino M, Grandaliano G, Gesualdo L, Castellano G (2018) Acute kidney injury to chronic kidney disease transition. Contrib Nephrol 193:45–54. (PMID: 2939315810.1159/000484962)
Burckhardt P, Nagin D, Vijayasarathy VPR, Padman R (2018) Multi-trajectory modeling to predict acute kidney injury in chronic kidney disease patients. In: AMIA annual symposium proceedings, p 1196.
Hounkpatin HO, Fraser SDS, Johnson MJ, Harris S, Uniacke M, Roderick PJ (2020) The association of socioeconomic status with incidence and outcomes of acute kidney injury. Clin Kidney J 13(2):245–252. (PMID: 3229788110.1093/ckj/sfz113)
Rodriguez RA, Hotchkiss JR, O’Hare AM (2013) Geographic information systems and chronic kidney disease: racial disparities, rural residence and forecasting. J Nephrol 26(1):3–15. (PMID: 23065915404763510.5301/jn.5000225)
Suchitra B, Ramkumar J, Karthikeyan R (2025) Frog leap inspired optimization-based extreme learning machine for accurate classification of latent autoimmune diabetes in adults (LADA). J Theor Appl Inf Technol 103(2):472–494.
Rezk NG, Alshathri S, Sayed A, Hemdan EE-D (2025) Explainable AI for chronic kidney disease prediction in medical IoT: integrating GANs and few-shot learning. Bioengineering 12(4):356. (PMID: 402817161202508310.3390/bioengineering12040356)
Moreno-Sánchez PA (2023) Data-driven early diagnosis of chronic kidney disease: development and evaluation of an explainable AI model. IEEE Access 11:38359–38369. (PMID: 10.1109/ACCESS.2023.3264270)
Samara MN, Harry KD (2025) Integrating Boruta, LASSO, and SHAP for clinically interpretable glioma classification using machine learning. BioMedInformatics 5(3):34. (PMID: 10.3390/biomedinformatics5030034)
Tangri N, Ferguson TW (2022) Practical utilization of prediction equations in chronic kidney disease. Blood Purif 51(Suppl. 1):32–38. (PMID: 10.1159/000530380)
Thomas MC, Neuen BL, Twigg SM, Cooper ME, Badve SV (2023) SGLT2 inhibitors for patients with type 2 diabetes and CKD: a narrative review. Endocr Connect 12(8):897–998. (PMID: 10.1530/EC-23-0005)
Sadria M, Layton A (2022) A predictive model for estimating protection against CKD and CVD with SGLT2 inhibition in patients with diabetes. FASEB J. https://doi.org/10.1096/fasebj.2022.36.S1.R4017. (PMID: 10.1096/fasebj.2022.36.S1.R4017)
Berezin AE, Berezina TA (2024) Plausible prediction of renoprotective effects of sodium-glucose cotransporter-2 inhibitors in patients with chronic kidney diseases. J Int Med Res 52(2):03000605241227659. (PMID: 383290771085438810.1177/03000605241227659)
Wang N et al (2023) Lnc-TMEM132D-AS1 as a potential therapeutic target for acquired resistance to osimertinib in non-small-cell lung cancer. Mol Omics 19(3):238–251. (PMID: 3665110410.1039/D2MO00261B)
Tong G et al (2020) The efficacy of sulodexide combined with Jinshuibao for treating early diabetic nephropathy patients. Int J Clin Exp Med 13(11):8308–8317.
Wang T et al (2025) Overview of pharmacodynamical research of traditional Chinese medicine on hyperuricemic nephropathy: from the perspective of dual-regulatory effect on the intestines and kidneys. Front Pharmacol 16:1517047. (PMID: 402646621201183310.3389/fphar.2025.1517047)
Rroji M, Figurek A, Spasovski G (2024) Advancing kidney transplant outcomes: the role of urinary proteomics in graft function monitoring and rejection detection. Expert Rev Proteomics 21(7–8):297–316. (PMID: 3913312110.1080/14789450.2024.2389829)
Eddy S, Mariani LH, Kretzler M (2020) Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol 16(11):657–668. (PMID: 3242428110.1038/s41581-020-0286-5)
Schena FP (2014) Biomarkers and personalized therapy in chronic kidney diseases. Taylor & Francis. (PMID: 10.1517/13543784.2014.922953)
Alghwiri AA et al (2025) Using machine learning to predict medication therapy problems among patients with chronic kidney disease. Am J Nephrol.
Ghosh BP et al (2024) Advancing chronic kidney disease prediction: comparative analysis of machine learning algorithms and a hybrid model. J Comput Sci Technol Stud 6(3):15–21. (PMID: 10.32996/jcsts.2024.6.3.2)
Li J et al (2023) A systematic collection of medical image datasets for deep learning. ACM Comput Surv 56(5):1–51.
Mandava S, Vinta SR, Ghosh H, Rahat IS (2024) A comparative analysis of machine learning and deep learning approaches for prediction of chronic kidney disease progression. EAI Endorsed Trans Internet Things 10:789–898. (PMID: 10.4108/eetiot.5325)
Di Noia T et al (2013) An end stage kidney disease predictor based on an artificial neural networks ensemble. Expert Syst Appl 40(11):4438–4445. (PMID: 10.1016/j.eswa.2013.01.046)
Mohamud KA et al (2025) The role of machine learning models in predicting cirrhosis mortality: a systematic review. Cureus 17(1):52–96.
Anagnostopoulos C, Van Der Schaar M, Collet J-P, Vecino RH (2025) Real-world data and causal machine learning to enhance drug development. Ther Innov Regul Sci 52:1–10.
Rekkas A, van Klaveren D, Ryan PB, Steyerberg EW, Kent DM, Rijnbeek PR (2023) A standardized framework for risk-based assessment of treatment effect heterogeneity in observational healthcare databases. NPJ Digit Med 6(1):58. (PMID: 369911441006024710.1038/s41746-023-00794-y)
Hemkens LG, Contopoulos-Ioannidis DG, Ioannidis JPA (2016) Current use of routinely collected health data to complement randomized controlled trials: a meta-epidemiological survey. CMAJ Open 4(2):E132–E140. (PMID: 27398355493363510.9778/cmajo.20150036)
Javed H, El-Sappagh S, Abuhmed T (2024) Robustness in deep learning models for medical diagnostics: security and adversarial challenges towards robust AI applications. Artif Intell Rev 58(1):12. (PMID: 10.1007/s10462-024-11005-9)
Ali H, Nikberg N (2024) Bias in AI-driven healthcare: navigating ethical challenges at an early stage.
Salybekov AA, Wolfien M, Hahn W, Hidaka S, Kobayashi S (2024) Artificial intelligence reporting guidelines’ adherence in nephrology for improved research and clinical outcomes. Biomedicines 12(3):606. (PMID: 385402191096835410.3390/biomedicines12030606)
Fayos De Arizón L et al (2023) Artificial intelligence: a new field of knowledge for nephrologists? Clin Kidney J 16(12):2314–2326. (PMID: 380460161068916910.1093/ckj/sfad182)
Palomares SM et al (2025) The impact of artificial intelligence technologies on nutritional care in patients with chronic kidney disease: a systematic review, J Renal Nutr.
Betzler BK et al (2023) Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes. J Am Med Inform Assoc 30(12):1904–1914. (PMID: 376591031065485810.1093/jamia/ocad179)
Biglari S, Mischak H, Beige J, Latosinska A, Siwy J, Banasik M (2025) The future of chronic kidney disease treatment: combination therapy (polypill) or biomarker-guided personalized intervention? Biomolecules 15(6):809. (PMID: 405634491219028210.3390/biom15060809)
Ayyalasomayajula SB (2022) Using machine learning methods to improve healthcare delivery in diabetes management. Oklahoma State University.
Sasaki T et al (2025) Annual eGFR slope and Adverse kidney outcome in IgA nephropathy: a post-hoc analysis of the Japan IgA Nephropathy Cohort Study (J-IGACS). medRxiv 25:2025–2026.
Tai Y-H et al (2025) Reversing the decline in peritoneal dialysis prevalence: the 2023 peritoneal dialysis reimbursement initiative in Taiwan. Peritoneal Dialysis Int 25:08968608251355424. (PMID: 10.1177/08968608251355424)
Thanh Phuc P et al (2024) Early detection of dementia in populations with type 2 diabetes: predictive analytics using machine learning approach. J Med Internet Res 26:e52107. (PMID: 394344741166987210.2196/52107)
Joshi M et al (2019) Wearable sensors to improve detection of patient deterioration. Expert Rev Med Devices 16(2):145–154. (PMID: 3058065010.1080/17434440.2019.1563480)
Wong SPY et al (2022) Long-term outcomes among patients with advanced kidney disease who forgo maintenance dialysis: a systematic review. JAMA Netw Open 5(3):e222255–e222255. (PMID: 35285915990734510.1001/jamanetworkopen.2022.2255)
Mutnuri MK, Stelfox HT, Forkert ND, Lee J (2024) Using domain adaptation and inductive transfer learning to improve patient outcome prediction in the intensive care unit: retrospective observational study. J Med Internet Res 26:e52730. (PMID: 391674421137537510.2196/52730)
Thorsen-Meyer H-C et al (2020) Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Lancet Digit Health 2(4):e179–e191. (PMID: 3332807810.1016/S2589-7500(20)30018-2)
Hossain KMS, Kabir JUZ, Shakil FI, Joy MIK, Nabil AR (2025) Implementing explainable AI for early detection of chronic kidney disease: strategic insights for health information systems management. J Comput Sci Technol Stud 7(5):140–153. (PMID: 10.32996/jcsts.2025.7.5.19)
Mandel EI, Fox M, Schell JO, Cohen RA (2024) Shared decision-making and patient communication in nephrology practice. Adv Kidney Dis Health 31(1):5–12. (PMID: 3840339410.1053/j.akdh.2023.12.003)
Thio CHL, van Zon SKR, van der Most PJ, Snieder H, Bültmann U, Gansevoort RT (2021) Associations of genetic factors, educational attainment, and their interaction with kidney function outcomes. Am J Epidemiol 190(5):864–874. (PMID: 3308986410.1093/aje/kwaa237)
Selby NM et al (2018) Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 33(suppl_2):ii4–ii14. (PMID: 30137584610664510.1093/ndt/gfy152)
Liu W et al (2023) Improving kidney outcomes in patients with nondiabetic chronic kidney disease through an artificial intelligence–based health coaching mobile app: retrospective cohort study. JMIR Mhealth Uhealth 11:e45531. (PMID: 372618951027304010.2196/45531)
Delrue C, De Bruyne S, Speeckaert MM (2024) Application of machine learning in chronic kidney disease: current status and future prospects. Biomedicines 12(3):568. (PMID: 385401811096778610.3390/biomedicines12030568)
Carpenter CA, Ugwoaba UA, Cardel MI, Ross KM (2022) Using self-monitoring technology for nutritional counseling and weight management. Digit Health 8:20552076221102776.
Cassimatis M, Kavanagh DJ (2012) Effects of type 2 diabetes behavioural telehealth interventions on glycaemic control and adherence: a systematic review. J Telemed Telecare 18(8):447–450. (PMID: 2320926610.1258/jtt.2012.gth105)
Kelly JT, Reidlinger DP, Hoffmann TC, Campbell KL (2016) Telehealth methods to deliver dietary interventions in adults with chronic disease: a systematic review and meta-analysis. Am J Clin Nutr 104(6):1693–1702. (PMID: 2793552310.3945/ajcn.116.136333)
Etli D, Djurovic A, Lark J (2024) The future of personalized healthcare: AI-driven wearables for real-time health monitoring and predictive analytics. Curr Res Health Sci 2(2):10–14.
Loughnane C, Laiti J, O’Donovan R, Dunne PJ (2025) Systematic review exploring human, AI, and hybrid health coaching in digital health interventions: trends, engagement, and lifestyle outcomes. Front Digit Health 7:1536416. (PMID: 403432151205867810.3389/fdgth.2025.1536416)
Tran V-T, Riveros C, Ravaud P (2019) Patients’ views of wearable devices and AI in healthcare: findings from the compare e-cohort. NPJ Digit Med 2(1):53. (PMID: 31304399657282110.1038/s41746-019-0132-y)
Ekholm M, Aulbach M, Walsh S, Phipps D, Rauta V, Knittle K (2025) Behavioral interventions targeting treatment adherence in chronic kidney disease: a systematic review and meta-analysis. Soc Sci Med 366:117594. (PMID: 3984238510.1016/j.socscimed.2024.117594)
Wen X, Wang Y, Shi H, Wang M, Lu P (2020) Systematic review and meta-analyses: dietary behavior interventions in non-dialysis chronic kidney disease. West J Nurs Res 42(11):937–947. (PMID: 3200955010.1177/0193945920905090)
Beetham KS et al (2022) Effect of a 3-year lifestyle intervention in patients with chronic kidney disease: a randomized clinical trial. J Am Soc Nephrol 33(2):431–441. (PMID: 34893535881998410.1681/ASN.2021050668)
Headley SA et al (2019) A personalized multi-component lifestyle intervention program leads to improved quality of life in persons with chronic kidney disease. medRxiv 14:19007989.
Jiamjariyapon T et al (2017) Effectiveness of integrated care on delaying progression of stage 3–4 chronic kidney disease in rural communities of Thailand (ESCORT study): a cluster randomized controlled trial. BMC Nephrol 18(1):83. (PMID: 28253839533573110.1186/s12882-016-0414-4)
Ayat Ali AS, Lim SK, Tang LY, Rashid AA, Chew B-H (2021) The effectiveness of nurse-led self-management support program for people with chronic kidney disease stage 3–4 (CKD-NLSM): study protocol for a randomized controlled trial. Sci Prog 104(2):00368504211026159. (PMID: 341436981045502910.1177/00368504211026159)
Sau A et al (2025) Artificial intelligence-enhanced electrocardiography for prediction of incident hypertension. JAMA Cardiol 10(3):214–223. (PMID: 397456841190472410.1001/jamacardio.2024.4796)
Alnaser RI, Abed MN, Alassaf FA, Alsaaty MH (2025) Integrating artificial intelligence into chronic kidney disease care: enhancing hemodialysis scheduling, comorbidity management, and diagnostic capabilities. Siriraj Med J 77(7):543–552. (PMID: 10.33192/smj.v77i7.274440)
Ferguson T et al (2022) Development and external validation of a machine learning model for progression of CKD. Kidney Int Rep 7(8):1772–1781. (PMID: 35967110936629110.1016/j.ekir.2022.05.004)
Arnould L et al (2023) Using artificial intelligence to analyse the retinal vascular network: the future of cardiovascular risk assessment based on oculomics? A narrative review. Ophthalmol Ther 12(2):657–674. (PMID: 3656292810.1007/s40123-022-00641-5)
Li Y, Padman R (2024) Enhancing end stage renal disease outcome prediction: a multi-sourced data-driven approach. arXiv preprint arXiv:2410.01859.
Altenbuchinger M et al (2019) A multi-source data integration approach reveals novel associations between metabolites and renal outcomes in the German Chronic Kidney Disease study. Sci Rep 9(1):13954. (PMID: 31562371676497210.1038/s41598-019-50346-2)
Netala VR, Hou T, Wang Y, Zhang Z, Teertam SK (2025) Cardiovascular biomarkers: tools for precision diagnosis and prognosis. Int J Mol Sci 26(7):3218. (PMID: 402440221198940210.3390/ijms26073218)
Matsushita K et al (2014) Cardiac and kidney markers for cardiovascular prediction in individuals with chronic kidney disease: the Atherosclerosis Risk in Communities study. Arterioscler Thromb Vasc Biol 34(8):1770–1777. (PMID: 24876355417233710.1161/ATVBAHA.114.303465)
Kula AJ et al (2021) Association of circulating cardiac biomarkers with electrocardiographic abnormalities in chronic kidney disease. Nephrol Dial Transplant 36(12):2282–2289. (PMID: 3336765210.1093/ndt/gfaa296)
Niizuma S, Iwanaga Y, Yahata T, Miyazaki S (2017) Renocardiovascular biomarkers: from the perspective of managing chronic kidney disease and cardiovascular disease. Front Cardiovasc Med 4:10. (PMID: 28321399533783210.3389/fcvm.2017.00010)
Burlacu A, Iftene A, Popa IV, Crisan-Dabija R, Brinza C, Covic A (2021) Computational models used to predict cardiovascular complications in chronic kidney disease patients: a systematic review. Medicina (B Aires) 57(6):538. (PMID: 10.3390/medicina57060538)
Tangri N et al (2013) Risk prediction models for patients with chronic kidney disease: a systematic review. Ann Intern Med 158(8):596–603. (PMID: 2358874810.7326/0003-4819-158-8-201304160-00004)
Yang J, Soltan AAS, Eyre DW, Yang Y, Clifton DA (2023) An adversarial training framework for mitigating algorithmic biases in clinical machine learning. NPJ Digit Med 6(1):55. (PMID: 369910771005081610.1038/s41746-023-00805-y)
Rojas JC et al (2022) Framework for integrating equity into machine learning models: a case study. Chest 161(6):1621–1627. (PMID: 35143823942432710.1016/j.chest.2022.02.001)
Chinta SV et al (2024) AI-driven healthcare: a review on ensuring fairness and mitigating bias. arXiv preprint arXiv:2407.19655.
Kang C et al (2024) Optimizing anemia management using artificial intelligence for patients undergoing hemodialysis. Sci Rep 14(1):26739. (PMID: 395009411153826810.1038/s41598-024-75995-w)
Brier ME, Gaweda AE, Aronoff GR (2018) Personalized anemia management and precision medicine in ESA and iron pharmacology in end-stage kidney disease. In: Seminars in nephrology. Elsevier, pp 410–417.
Lim L-M et al (2025) Computer-assisted prescription of erythropoiesis-stimulating agents in patients undergoing maintenance hemodialysis: a randomized control trial for artificial intelligence model selection. JAMIA Open 8(2):ooaf020. (PMID: 401615491195092310.1093/jamiaopen/ooaf020)
Garbelli M et al (2024) Usage of the anemia control model is associated with reduced hospitalization risk in hemodialysis. Biomedicines 12(10):2219. (PMID: 394575321150496310.3390/biomedicines12102219)
Barbieri C et al (2015) A new machine learning approach for predicting the response to anemia treatment in a large cohort of end stage renal disease patients undergoing dialysis. Comput Biol Med 61:56–61. (PMID: 2586416410.1016/j.compbiomed.2015.03.019)
Ingrasciotta Y et al (2019) In search of potential predictors of erythropoiesis-stimulating agents (ESAs) hyporesponsiveness: a population-based study. BMC Nephrol 20(1):359. (PMID: 3152111710.1186/s12882-019-1554-0)
Zinovev D, Novitskiy V, Malkoch A (2020) P1393 A system for forecasting of drug dosage for bone mineral disorders correction in patients on chronic dialysis. Nephrol Dial Transplant 35(Supplement_3):gfaa142-P1393. (PMID: 10.1093/ndt/gfaa142.P1393)
Ito T, Akamatsu K (2024) Echocardiographic manifestations in end-stage renal disease. Heart Fail Rev 29(2):465–478. (PMID: 3807173810.1007/s10741-023-10376-5)
Li Y et al (2024) Machine learning based biomarker discovery for chronic kidney disease–mineral and bone disorder (CKD-MBD). BMC Med Inform Decis Mak 24(1):36. (PMID: 383171401084017310.1186/s12911-024-02421-6)
Prasad B, Ferguson T, Tangri N, Ng CY, Nickolas TL (2019) Association of bone mineral density with fractures across the spectrum of chronic kidney disease: the Regina CKD-MBD study. Can J Kidney Health Dis 6:2054358119870539. (PMID: 31467681670441610.1177/2054358119870539)
Lindeboom L et al (2022) On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease. Nephrol Dial Transplant 37(11):2048–2054. (PMID: 3354486310.1093/ndt/gfab025)
Tan GFL, Du T, Liu JS, Chai CC, Nyein CM, Liu AYL (2022) Automated lung ultrasound image assessment using artificial intelligence to identify fluid overload in dialysis patients. BMC Nephrol 23(1):410. (PMID: 36564742978967210.1186/s12882-022-03044-7)
Belabbaci NA, Anaadumba R, Alam MAU (2025) Recent advancements in wearable hydration-monitoring technologies: scoping review of sensors, trends, and future directions. JMIR Mhealth Uhealth 13:e60569. (PMID: 405130951220526510.2196/60569)
Abohtyra R, Vincent T, Schneditz D (2024) Magnitude and precision of absolute blood volume estimated during hemodialysis. Ren Fail 46(2):2377781. (PMID: 391483181132881410.1080/0886022X.2024.2377781)
Neyra JA et al (2024) Challenges in the care of patients with AKI receiving outpatient dialysis: AKINow recovery workgroup report. Kidney360 5(2):274–284. (PMID: 3805573410.34067/KID.0000000000000332)
Fan Z, Mamouei M, Li Y, Rao S, Rahimi K (2025) Identification of heart failure subtypes using transformer-based deep learning modelling: a population-based study of 379,108 individuals. EBioMedicine. https://doi.org/10.1016/j.ebiom.2025.105657. (PMID: 10.1016/j.ebiom.2025.1056574120247112142561)
Gupta R et al (2021) A system-wide population health value approach to reduce hospitalization among chronic kidney disease patients: an observational study. J Gen Intern Med 36(6):1613–1621. (PMID: 3314027710.1007/s11606-020-06272-5)
Schwantes IR, Axelrod DA (2021) Technology-enabled care and artificial intelligence in kidney transplantation. Curr Transplant Rep 8(3):235–240. (PMID: 34341714831768110.1007/s40472-021-00336-z)
Ali H et al (2024) Live-donor kidney transplant outcome prediction (L-TOP) using artificial intelligence. Nephrol Dial Transplant 39(12):2088–2099. (PMID: 3868446910.1093/ndt/gfae088)
Yatim K et al (2025) Applying artificial intelligence to quantify body composition on abdominal CTs and better predict kidney transplantation wait-list mortality. J Am Coll Radiol 22(3):332–341. (PMID: 4004431210.1016/j.jacr.2025.01.004)
Olawade DB, Marinze S, Qureshi N, Weerasinghe K, Teke J (2025) The impact of artificial intelligence and machine learning in organ retrieval and transplantation: a comprehensive review. Curr Res Transl Med 73(2):103493. (PMID: 39792149)
Alowidi N, Ali R, Sadaqah M, Naemi FMA (2024) Advancing kidney transplantation: a machine learning approach to enhance donor–recipient matching. Diagnostics 14(19):2119. (PMID: 394105231147588110.3390/diagnostics14192119)
Nursetyo AA, Syed-Abdul S, Uddin M, Li Y-CJ (2019) Graft rejection prediction following kidney transplantation using machine learning techniques: a systematic review and meta-analysis. MEDINFO 2019: Health and Wellbeing e-Networks for All 10–14.
Kim J-M et al (2024) Predicting prognostic factors in kidney transplantation using a machine learning approach to enhance outcome predictions: a retrospective cohort study. Int J Surg 110(11):7159–7168. (PMID: 391164481157307010.1097/JS9.0000000000002028)
Senanayake S, White N, Graves N, Healy H, Baboolal K, Kularatna S (2019) Machine learning in predicting graft failure following kidney transplantation: a systematic review of published predictive models. Int J Med Inform 130:103957. (PMID: 3147244310.1016/j.ijmedinf.2019.103957)
Arenson M et al (2023) Predicting kidney transplant recipient cohorts’ 30-day rehospitalization using clinical notes and electronic health care record data. Kidney Int Rep 8(3):489–498. (PMID: 3693807810.1016/j.ekir.2022.12.006)
Stammers M et al (2025) A foundation systematic review of natural language processing applied to gastroenterology & hepatology. BMC Gastroenterol 25(1):58. (PMID: 399157031180060110.1186/s12876-025-03608-5)
Lozano-Suarez N et al (2025) Bioethical challenges in the integration of artificial intelligence in transplant surgery 4.0: a scoping review. Digit Health 11:20552076251351700. (PMID: 405748841219854410.1177/20552076251351700)
Deshpande R (2024) Smart match: revolutionizing organ allocation through artificial intelligence. Front Artif Intell 7:1364149. (PMID: 384818221093308810.3389/frai.2024.1364149)
Cachat-Rosset G, Klarsfeld A (2023) Diversity, equity, and inclusion in artificial intelligence: an evaluation of guidelines. Appl Artif Intell 37(1):2176618. (PMID: 10.1080/08839514.2023.2176618)
He J et al (2025) Identification and validation of an explainable early-stage chronic kidney disease prediction model: a multicenter retrospective study. EClinicalMedicine. https://doi.org/10.1016/j.eclinm.2025.103286. (PMID: 10.1016/j.eclinm.2025.1032864115815312555788)
Arif MS, Rehman AU, Asif D (2024) Explainable machine learning model for chronic kidney disease prediction. Algorithms 17(10):443. (PMID: 10.3390/a17100443)
Chakraborty S, Ghosh R, Rakshit G, Singh NK, Rudrapal M (2025) Target identification and validation in drug discovery. Drug Discov One Health Approach Combat Infect Dis 41:117.
Makvandi K et al (2022) Multiparametric magnetic resonance imaging allows non-invasive functional and structural evaluation of diabetic kidney disease. Clin Kidney J 15(7):1387–1402. (PMID: 35756740921765710.1093/ckj/sfac054)
Qin X, Liu X, Xia L, Luo Q, Zhang C (2024) Multimodal ultrasound deep learning to detect fibrosis in early chronic kidney disease. Ren Fail 46(2):2417740. (PMID: 394357001149757910.1080/0886022X.2024.2417740)
Kim K et al (2021) Real-time clinical decision support based on recurrent neural networks for in-hospital acute kidney injury: external validation and model interpretation. J Med Internet Res 23(4):e24120. (PMID: 33861200808797210.2196/24120)
Yoo KD et al (2017) A machine learning approach using survival statistics to predict graft survival in kidney transplant recipients: a multicenter cohort study. Sci Rep 7(1):1–12. (PMID: 10.1038/s41598-017-08008-8)
Thakur SS et al (2018) Artificial-intelligence-based prediction of clinical events among hemodialysis patients using non-contact sensor data. Sensors 18(9):2833. (PMID: 30150592616363810.3390/s18092833)
Hermsen M et al (2019) Deep learning-based histopathologic assessment of kidney tissue. J Am Soc Nephrol 30(10):1968–1979. (PMID: 31488607677935610.1681/ASN.2019020144)
Tan YY et al (2024) Prognostic potentials of AI in ophthalmology: systemic disease forecasting via retinal imaging. Eye Vis 11(1):17. (PMID: 10.1186/s40662-024-00384-3)
Kenner BJ et al (2021) Early detection of pancreatic cancer: applying artificial intelligence to electronic health records. Pancreas 50(7):916–922. (PMID: 34629446854206810.1097/MPA.0000000000001882)
Eskandar K (2024) Artificial intelligence in nephrology: revolutionizing diagnosis, treatment, and patient care. KIDNEYS 13(3):213–219. (PMID: 10.22141/2307-1257.13.3.2024.466)
Bryan C, Boren SA (2008) The use and effectiveness of electronic clinical decision support tools in the ambulatory/primary care setting: a systematic review of the literature. Inform Prim Care. https://doi.org/10.14236/jhi.v16i2.679. (PMID: 10.14236/jhi.v16i2.67918713524)
Nikolaev VA, Nikolaev AA (2024) Perspectives of decision support system telerehab in the management of post-stroke telerehabilitation. Life 14(9):1059. (PMID: 393378441143284410.3390/life14091059)
Wang L et al (2023) Human-centered design and evaluation of AI-empowered clinical decision support systems: a systematic review. Front Comput Sci 5:1187299. (PMID: 10.3389/fcomp.2023.1187299)
Khalifa M, Zabani I (2016) Improving utilization of clinical decision support systems by reducing alert fatigue: strategies and recommendations. In: Unifying the applications and foundations of biomedical and health informatics. IOS Press, pp 51–54.
Liu B et al (2024) Interpretable subgroup learning-based modeling framework: Study of diabetic kidney disease prediction. Health Inform J 30(4):14604582241291380. (PMID: 10.1177/14604582241291379)
Sutherland SM, Goldstein SL, Bagshaw SM (2017) Leveraging big data and electronic health records to enhance novel approaches to acute kidney injury research and care. Blood Purif 44(1):68–76. (PMID: 2826821010.1159/000458751)
Poly TN, Islam MM, Muhtar MS, Yang H-C, Nguyen PA, Li Y-C (2020) Machine learning approach to reduce alert fatigue using a disease medication-related clinical decision support system: model development and validation. JMIR Med Inform 8(11):e19489. (PMID: 33211018771465010.2196/19489)
Giacobbe DR et al (2024) Artificial intelligence and prescription of antibiotic therapy: present and future. Expert Rev Anti-Infect Ther 22(10):819–833. (PMID: 3915544910.1080/14787210.2024.2386669)
Nunavath RS, Nagappan K (2024) Future of pharmaceutical industry: role of artificial intelligence, automation and robotics. J Pharmacol Pharmacother. https://doi.org/10.1177/0976500X241252295. (PMID: 10.1177/0976500X241252295)
Finkelstein J, Gabriel A, Schmer S, Truong T-T, Dunn A (2024) Identifying facilitators and barriers to implementation of AI-assisted clinical decision support in an electronic health record system. J Med Syst 48(1):89. (PMID: 392923141141089610.1007/s10916-024-02104-9)
Abell B et al (2023) Identifying barriers and facilitators to successful implementation of computerized clinical decision support systems in hospitals: a NASSS framework-informed scoping review. Implement Sci 18(1):32. (PMID: 374959971037326510.1186/s13012-023-01287-y)
Wang Y et al (2025) A practical guide for nephrologist peer reviewers: evaluating artificial intelligence and machine learning research in nephrology. Ren Fail 47(1):2513002. (PMID: 406200961223910710.1080/0886022X.2025.2513002)
Gama F, Tyskbo D, Nygren J, Barlow J, Reed J, Svedberg P (2022) Implementation frameworks for artificial intelligence translation into health care practice: scoping review. J Med Internet Res 24(1):e32215. (PMID: 35084349883226610.2196/32215)
Chaudhuri S et al (2021) Artificial intelligence enabled applications in kidney disease. Semin Dial. https://doi.org/10.1111/sdi.12915. (PMID: 10.1111/sdi.1291532924202)
Cheungpasitporn W, Thongprayoon C, Kashani KB (2024) Artificial intelligence and machine learning’s role in sepsis-associated acute kidney injury. Kidney Res Clin Pract 43(4):417. (PMID: 389340281123733310.23876/j.krcp.23.298)
Balch JA et al (2021) Machine learning applications in solid organ transplantation and related complications. Front Immunol 12:739728. (PMID: 34603324848193910.3389/fimmu.2021.739728)
Tzamaria M, Petaniti E, Liakou C, Plytas M (2020) Leveraging artificial intelligence, data analysis, and computer science in primary care: enhancing electronic health records for improved patient outcomes. Int J Syst Appl Technol 16(1):1–15.
Hueso M, Vellido A (2024) How artificial intelligence is transforming nephrology. BMC Nephrol 25(1):276. (PMID: 391922321134867210.1186/s12882-024-03724-6)
Amiri Z (2024) Leveraging AI-enabled information systems for healthcare management. J Comput Inf Syst 42:1–28.
Kaur N, Bhattacharya S, Butte AJ (2021) Big data in nephrology. Nat Rev Nephrol 17(10):676–687. (PMID: 3419400610.1038/s41581-021-00439-x)
Wu T-C et al (2024) A neurosurgical readmissions reduction program in an academic hospital leveraging machine learning, workflow analysis, and simulation. Appl Clin Inform 15(03):479–488. (PMID: 388972301118669910.1055/s-0044-1787119)
Willetts J et al (2020) P1268 mixing artificial intelligence and clinical outreach to reduce risk of fluid overload hospitalization in patients with end-stage renal disease. Nephrol Dial Transplant 35(Supplement_3):gfaa142-P1268. (PMID: 10.1093/ndt/gfaa142.P1268)
Swee ML et al (2020) Development and implementation of a telenephrology dashboard for active surveillance of kidney disease: a quality improvement project. BMC Nephrol 21(1):424. (PMID: 33023489753952110.1186/s12882-020-02077-0)
Rosenbacke R, Melhus Å, McKee M, Stuckler D (2024) How explainable artificial intelligence can increase or decrease clinicians’ trust in AI applications in health care: systematic review. JMIR AI 3:e53207. (PMID: 394763651156142510.2196/53207)
Kim YK et al (2024) Early prediction of cardiac arrest in the intensive care unit using explainable machine learning: retrospective study. J Med Internet Res 26:e62890. (PMID: 392884041144562710.2196/62890)
Oak P, Deshpande PS, Iyer B (2025) A deep learning-driven multimodal healthcare system for the early detection of cervical cancer. Eng Technol Appl Sci Res 15(4):24328–24333. (PMID: 10.48084/etasr.11277)
Mittapelly SSR (2025) The convergence of FHIR and AI: revolutionizing healthcare data interoperability. J Comput Sci Technol Stud 7(5):810–816.
Rigas ES et al (2024) Semantic interoperability for an AI-based applications platform for smart hospitals using HL7 FHIR. J Syst Softw 215:112093. (PMID: 10.1016/j.jss.2024.112093)
Ye J, Hai J, Song J, Wang Z (2024) The role of artificial intelligence in the application of the integrated electronic health records and patient-generated health data. medRxiv 54:2024–2025.
Praveen MV, Vineethan T. Revolutionizing education: a brief study on the impact of AI-Driven tools on teaching and learning behaviour.
Barohn RJ et al (2022) Determining best or inferior drug (s) using an adaptive platform for cryptogenic sensory polyneuropathy. RRNMF Neuromuscular J 3(2):45–98. (PMID: 10.17161/rrnmf.v3i2.18133)
Nygård HT, Nguyen L, Berg RC (2022) Effect of remote patient monitoring for patients with chronic kidney disease who perform dialysis at home: a systematic review. BMJ Open 12(12):e061772. (PMID: 36600376973036210.1136/bmjopen-2022-061772)
Manani SM et al (2020) Remote monitoring in peritoneal dialysis: benefits on clinical outcomes and on quality of life. J Nephrol 33(6):1301–1308. (PMID: 10.1007/s40620-020-00812-2)
Deevi DP, Allur NS, Dondapati K, Chetlapalli H, Kodadi S, Ajao LA (2024) AI-integrated probabilistic neuro-fuzzy TemporalFusionNet for robotic IoMT automation in chronic kidney disease detection and prediction. In: 2024 international conference on emerging research in computational science (ICERCS), IEEE, pp 1–7.
Rao PS, Kumar SS, Habeeb N, Sharma H, Gupta A (2024) Chronic kidney disease patients in predicting renal function decline integration of machine learning techniques. In: 2023 4th international conference on intelligent technologies (CONIT), IEEE, pp 1–6.
Wu Q et al (2025) A noninvasive model for chronic kidney disease screening and common pathological type identification from retinal images. Nat Commun 16(1):6962. (PMID: 407305561230770510.1038/s41467-025-62273-0)
Paniagua R et al (2025) Remote monitoring of automated peritoneal dialysis reduces mortality, adverse events and hospitalizations: a cluster-randomized controlled trial. Nephrol Dial Transplant 40(3):588–597. (PMID: 3916511510.1093/ndt/gfae188)
di Tocco TC, Lacquaniti A, Ragno C, Sfravara G, Bucca M, Monardo P (2024) Telemedicine and Remote Monitoring in peritoneal dialysis improve clinical outcomes, quality of life and cost efficiency. G Ital Nefrol 41(6):89–108.
Foley P et al (2022) OpenFL: the open federated learning library. Phys Med Biol 67(21):214001. (PMID: 971534710.1088/1361-6560/ac97d9)
Abtahi A, Aminifar A, Aminifar A (2024) Privacy-preserving federated interpretability. In: 2024 IEEE international conference on big data (BigData), IEEE, pp 7592–7601.
Ayyappan G, Loganathan V, Padma E, Ilavarasan S, Subash A (2025) Federated learning and edge AI for privacy-preserving diabetes prediction in healthcare. In: 2025 3rd international conference on self sustainable artificial intelligence systems (ICSSAS), IEEE, pp 1116–1121.
Koraishy FM, Rohatgi R (2020) Telenephrology: an emerging platform for delivering renal health care. Am J Kidney Dis 76(3):417–426. (PMID: 3250729110.1053/j.ajkd.2020.02.442)
Koppula S, Patel K, Unruh M (2025) The delivery of kidney care in rural or sparsely populated settings. Am J Kidney Dis. https://doi.org/10.1053/j.ajkd.2025.03.017. (PMID: 10.1053/j.ajkd.2025.03.01740311667)
Lea JP, Tannenbaum J (2020) The role of telemedicine in providing nephrology care in rural hospitals. Kidney360 1(6):553–556. (PMID: 35368600880931710.34067/KID.0001122019)
De Vecchi AF, Dratwa M, Wiedemann ME (1999) Healthcare systems and end-stage renal disease (ESRD) therapies—an international review: costs and reimbursement/funding of ESRD therapies. Nephrol Dial Transplant 14(suppl_6):31–41. (PMID: 1052871010.1093/ndt/14.suppl_6.31)
Ramos R, Molina M (2013) Nuevos modelos de gestión de asistencia integral en nefrología. Nefrología (Madrid) 33(3):301–307.
Banerjee A, Babu R, Jayaraman D, Chilukuri S (2024) Preoperative three-dimensional modelling and virtual reality planning aids nephron sparing surgery in a child with bilateral Wilms tumour. BMJ Case Rep 17(4):e260600. (PMID: 3864293110.1136/bcr-2024-260600)
Abdelgadir Y et al (2024) AI integration in nephrology: evaluating ChatGPT for accurate ICD-10 documentation and coding. Front Artif Intell 7:1457586. (PMID: 392865491140280810.3389/frai.2024.1457586)
Loftus TJ et al (2020) Artificial intelligence and surgical decision-making. JAMA Surg 155(2):148–158. (PMID: 31825465728680210.1001/jamasurg.2019.4917)
Hussain SA, Bresnahan M, Zhuang J (2025) The bias algorithm: how AI in healthcare exacerbates ethnic and racial disparities–a scoping review. Ethn Health 30(2):197–214. (PMID: 3948885710.1080/13557858.2024.2422848)
Nazer LH et al (2023) Bias in artificial intelligence algorithms and recommendations for mitigation. PLoS Digit Health 2(6):e0000278. (PMID: 373477211028701410.1371/journal.pdig.0000278)
Mittermaier M, Raza MM, Kvedar JC (2023) Bias in AI-based models for medical applications: challenges and mitigation strategies. NPJ Digit Med 6(1):113. (PMID: 373118021026440310.1038/s41746-023-00858-z)
Jamal A, Kumar PA, Ampavathi A, Barot KK, Golla K, Bhosale YH (2025) Deep learning for early diagnosis of chronic conditions using electronic health records. J Neonatal Surg 14(18s):1099–1110.
Erukala M, Sanampudi SK (2024) Privacy-preserving federated learning for predictive healthcare on heterogeneous medical data. In: 2024 international conference on emerging research in computational science (ICERCS), IEEE, pp 1–5.
Gao X, Mi W, Feng X (2025) Personal health data protection and intelligent healthcare applications under generative adversarial network. Sci Rep 15(1):16558. (PMID: 403606311207563410.1038/s41598-025-01575-1)
Naidu UG, Lakkshmanan A, Krishna JSVG, Elamathi E, Reddy TS (2025) Federated AI framework for privacy-preserving differential diagnosis across distributed medical networks. In: 2025 6th international conference on inventive research in computing applications (ICIRCA), IEEE, pp 932–940.
Ghosh SK, Khandoker AH (2024) Investigation on explainable machine learning models to predict chronic kidney diseases. Sci Rep 14(1):3687. (PMID: 383558761086695310.1038/s41598-024-54375-4)
Murugesan G et al (2022) Fuzzy logic-based systems for the diagnosis of chronic kidney disease. Biomed Res Int 2022:2653665. (PMID: 10.1155/2022/2653665)
Trejo MW et al (2023) # 4466 Explainability of a deep learning based classification model for anca-associated glomerulonephritis. Nephrol Dial Transpl 38(Supplement_1):gfad063c_4466. (PMID: 10.1093/ndt/gfad063c_4466)
Shi X, Qu T, Van Pottelbergh G, van den Akker M, De Moor B (2022) A resampling method to improve the prognostic model of end-stage kidney disease: a better strategy for imbalanced data. Front Med Lausanne 9:730748. (PMID: 35321465893506010.3389/fmed.2022.730748)
Stolpe S et al (2022) External validation of six clinical models for prediction of chronic kidney disease in a German population. BMC Nephrol 23(1):272. (PMID: 35915408934108910.1186/s12882-022-02899-0)
Rehman AU, Neyra JA, Chen J, Ghazi L (2025) Machine learning models for acute kidney injury prediction and management: a scoping review of externally validated studies. Crit Rev Clin Lab Sci. https://doi.org/10.1080/10408363.2025.2497843. (PMID: 10.1080/10408363.2025.249784340322979)
A. Cama-Olivares et al., “Systematic Review and Meta-Analysis of Machine Learning Models for Acute Kidney Injury Risk Classification,” Journal of the American Society of Nephrology, pp. 10–1681, 2024.
Armando LG (2025) Analysis of Real-World Data and update of a Clinical Decision Support System (CDSS) to investigate and support quality and sustainability of pharmacological therapies.
Ferris M et al (2013) Patient recruitment into a multicenter randomized clinical trial for kidney disease: report of the focal segmental glomerulosclerosis clinical trial (FSGS CT). Clin Transl Sci 6(1):13–20. (PMID: 2339908410.1111/cts.12003)
Liu X et al (2020) Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Health 2(10):e537–e548. (PMID: 33328048818333310.1016/S2589-7500(20)30218-1)
Collins GS et al (2021) Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 11(7):e048008. (PMID: 34244270827346110.1136/bmjopen-2020-048008)
Singh P et al (2025) Artificial intelligence in nephrology: clinical applications and challenges. Kidney Med 7(1):100927. (PMID: 3980341710.1016/j.xkme.2024.100927)
Bartusik-Aebisher D, Rogóż K, Aebisher D (2025) Artificial intelligence and ECG: a new frontier in cardiac diagnostics and prevention. Biomedicines 13(7):1685. (PMID: 407227561229298910.3390/biomedicines13071685)
Kryszyn J, Smolik WT, Wanta D, Wróblewski P, Midura M (2024) Comparison of openEHR open-source servers. Int J Electron Telecommun 56:161–167. (PMID: 10.24425/ijet.2024.149526)
Buslón N, Cirillo D, Rios O, Perera del Rosario S (2025) Exploring gender bias in AI for personalized medicine: focus group study with trans community members. J Med Internet Res 27:e72325. (PMID: 407299591230700410.2196/72325)
Jebraeily M, Valizadeh MA, Rahimi B, Saeidi S (2022) The development of a clinical dashboard for monitoring of key performance indicators in ICU. J Iran Med Counc 5(2):308–317.
Praveen R, Shrivastava A, Sharma G, Shakir AM, Gupta M, Peri SSSRG (2025) Overcoming adoption barriers strategies for scalable AI transformation in enterprises. In: 2025 international conference on engineering, technology & management (ICETM), IEEE, pp 1–6.
Kuguoglu BK, van der Voort H, Janssen M (2021) The giant leap for smart cities: scaling up smart city artificial intelligence of things (AIoT) initiatives. Sustainability 13(21):12295. (PMID: 10.3390/su132112295)
Berndtsson M, Ericsson A, Svahn T (2020) Scaling up data-driven pilot projects. AI Mag 41(3):94–102.
Joshi MR (2017) The potential impact of public health interventions in preventing kidney disease. Semin Nephrol. https://doi.org/10.1016/j.semnephrol.2017.02.004. (PMID: 10.1016/j.semnephrol.2017.02.00428532553)
Okpechi IG, Bello AK, Luyckx VA, Wearne N, Swanepoel CR, Jha V (2021) Building optimal and sustainable kidney care in low resource settings: the role of healthcare systems. Nephrology 26(12):948–960. (PMID: 3428824610.1111/nep.13935)
García-Carro C, Vergara A, Bermejo S, Azancot MA, Sellarés J, Soler MJ (2021) A nephrologist perspective on obesity: from kidney injury to clinical management. Front Med Lausanne 8:655871. (PMID: 33928108807652310.3389/fmed.2021.655871)
Faldu CT, Knicely DH (2025) Advanced chronic kidney disease and patient education. Kidney and Dialysis 5(3):32. (PMID: 10.3390/kidneydial5030032)
Shi R, Mendoza-Sanchez M, Qadir M, Joshi S (2025) A plant-based diet for cardiovascular risk reduction in kidney disease with a focus on Cardiovascular-Kidney-Metabolic syndrome. Cardiol Clin. https://doi.org/10.1016/j.ccl.2024.12.006. (PMID: 10.1016/j.ccl.2024.12.00640582738)
Kauttonen J, Rousi R, Alamäki A (2025) Trust and acceptance challenges in the adoption of AI applications in health care: quantitative survey analysis. J Med Internet Res 27:e65567. (PMID: 401168531197158410.2196/65567)
Catapan SC et al (2025) A systematic review of consumers’ and healthcare professionals’ trust in digital healthcare. NPJ Digit Med 8(1):115. (PMID: 399846781184573110.1038/s41746-025-01510-8)
Chen C, Cui Z (2025) Impact of AI-assisted diagnosis on American patients’ trust in and intention to seek help from health care professionals: randomized, web-based survey experiment. J Med Internet Res 27:e66083. (PMID: 405321801222255910.2196/66083)
Bussone A, Stumpf S, O’Sullivan D (2015) The role of explanations on trust and reliance in clinical decision support systems. In: 2015 international conference on healthcare informatics, IEEE, pp 160–169.
Naiseh M, Simkute A, Zieni B, Jiang N, Ali R (2024) C-XAI: a conceptual framework for designing XAI tools that support trust calibration. J Responsible Technol 17:100076. (PMID: 10.1016/j.jrt.2024.100076)
Schwartz JM et al (2022) Factors influencing clinician trust in predictive clinical decision support systems for in-hospital deterioration: qualitative descriptive study. JMIR Hum Factors 9(2):e33960. (PMID: 35550304913665610.2196/33960)
Sebastian G, George A, Jackson G Jr (2023) Persuading patients using rhetoric to improve artificial intelligence adoption: experimental study. J Med Internet Res 25:e41430. (PMID: 369128691013186510.2196/41430)
Park M, Son S, Lee S, Baek H, Park JI (2024) Enhancing digital health engagement in chronic disease: the role of doctor-patient communication and media use in acceptance of digital health care among end-stage kidney disease patients. Cyberpsychol Behav Soc Netw 27(12):939–947. (PMID: 3913312810.1089/cyber.2023.0699)
Kovalerchuk B (2024) Interpretable AI/ML for high-stakes tasks with human-in-the-loop: critical review and future trends.
Pflanzer M, Traylor Z, Lyons JB, Dubljević V, Nam CS (2023) Ethics in human–AI teaming: principles and perspectives. AI Ethics 3(3):917–935. (PMID: 10.1007/s43681-022-00214-z)
Rahwan I (2018) Society-in-the-loop: programming the algorithmic social contract. Ethics Inf Technol 20(1):5–14. (PMID: 10.1007/s10676-017-9430-8)
Toreini E, Aitken M, Coopamootoo K, Elliott K, Zelaya CG, Van Moorsel A (2020) The relationship between trust in AI and trustworthy machine learning technologies. In: Proceedings of the 2020 conference on fairness, accountability, and transparency, pp 272–283.
Zhu Y, Bi D, Saunders M, Ji Y (2023) Prediction of chronic kidney disease progression using recurrent neural network and electronic health records. Sci Rep 13(1):22091. (PMID: 380869051071642810.1038/s41598-023-49271-2)
Khan SF, Rosner MH (2025) Optimizing peritoneal dialysis. Rev Front Nephrol.
Vekaria V, Gandhi R, Chavarkar B, Shah H, Bhadane C, Chaudhari P (2024) Identification of kidney disorders in decentralized healthcare systems through federated transfer learning. Procedia Comput Sci 233:998–1010. (PMID: 10.1016/j.procs.2024.03.289)
Hercz AE, Nicholas SB, Bui AAT, Norris KC (2024) Health equity and artificial intelligence in nephrology. Clin J Am Soc Nephrol 25:10–2215.
Shrivastava A, Jain U, Al-Farouni M, Kumar Y, Anandhi RJ, Bhavana M (2024) Proposed framework for modifications to artificial intelligence/machine learning (Ai/Ml)-based software as a medical device (SAMD). In: 2024 7th international conference on contemporary computing and informatics (IC3I), IEEE, pp 1755–1763.
Osamika D, Adelusi BS, Kelvin-Agwu MTC, Mustapha AY, Forkuo AY, Ikhalea N. A critical review of health data interoperability standards: FHIR, HL7, and beyond.
Hsieh W-H, Ku CC-Y, Hwang HP-C, Tsai M-J, Chen Z-Z (2023) Model for predicting complications of hemodialysis patients using data from the internet of medical things and electronic medical records. IEEE J Transl Eng Health Med 11:375–383. (PMID: 3743554110.1109/JTEHM.2023.3234207)
Organization WH (2024) Ethics and governance of artificial intelligence for health: large multi-modal models. WHO guidance. World Health Organization.
Rojas JC, Teran M, Umscheid CA (2023) Clinician trust in artificial intelligence: what is known and how trust can be facilitated. Crit Care Clin 39(4):769–782. (PMID: 3770433910.1016/j.ccc.2023.02.004)
Bello AK et al (2024) An update on the global disparities in kidney disease burden and care across world countries and regions. Lancet Glob Health 12(3):e382–e395. (PMID: 3836541310.1016/S2214-109X(23)00570-3)
Wang P et al (2024) Federated learning with partially labeled data: a conditional distillation approach. arXiv preprint arXiv:2412.18833.
Mușat F et al (2024) Machine learning models in sepsis outcome prediction for ICU patients: integrating routine laboratory tests—a systematic review. Biomedicines 12(12):2892. (PMID: 397677981172703310.3390/biomedicines12122892)
Badidi E (2023) Edge AI for early detection of chronic diseases and the spread of infectious diseases: opportunities, challenges, and future directions. Future Internet 15(11):370. (PMID: 10.3390/fi15110370)
Nazir S, Kaleem M (2023) Federated learning for medical image analysis with deep neural networks. Diagnostics 13(9):1532. (PMID: 371749251017719310.3390/diagnostics13091532)
Deng T, Hamdan H, Yaakob R, Kasmiran KA (2023) Personalized federated learning for in-hospital mortality prediction of multi-center ICU. IEEE Access 11:11652–11663. (PMID: 10.1109/ACCESS.2023.3241488)
Rajendran S, Pan W, Sabuncu MR, Chen Y, Zhou J, Wang FEI (2024) Learning across diverse biomedical data modalities and cohorts: challenges and opportunities for innovation. Patterns. https://doi.org/10.1016/j.patter.2023.100913. (PMID: 10.1016/j.patter.2023.1009133837012910873158)
Thakur D, Guzzo A, Fortino G, Piccialli F (2025) Green federated learning: a new era of green aware AI. ACM Comput Surv 57(8):1–36. (PMID: 10.1145/3718363)
Qu L, Balachandar N, Rubin DL (2021) An experimental study of data heterogeneity in federated learning methods for medical imaging. arXiv preprint arXiv:2107.08371.
Kaur S et al (2024) Precision medicine with data-driven approaches: a framework for clinical translation. AIJMR-Adv Int J Multidiscip Res 2(5).
Firdaus M, Rhee K-H (2024) Secure federated learning with blockchain and homomorphic encryption for healthcare data sharing. In: 2024 international conference on cyberworlds (CW), IEEE, pp 257–263.
Yang Q et al (2024) Blockchain-based decentralized federated learning with on-chain model aggregation and incentive mechanism for industrial IoT. IEEE Open J Commun Soc. https://doi.org/10.1109/OJCOMS.2024.3471621. (PMID: 10.1109/OJCOMS.2024.3471621)
Liu Y, Zhang H, Wang M, Xie Q, Wang L (2025) An efficient privacy-enhanced federated learning with single-key homomorphic encryption. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2025.3553134. (PMID: 10.1109/JIOT.2025.3553134)
Jiang B, Li J, Yue G, Song H (2021) Differential privacy for industrial internet of things: opportunities, applications, and challenges. IEEE Internet Things J 8(13):10430–10451. (PMID: 10.1109/JIOT.2021.3057419)
Cheung ATM et al (2023) Methods and impact for using federated learning to collaborate on clinical research. Neurosurgery 92(2):431–438. (PMID: 3639942810.1227/neu.0000000000002198)
Hatherley J, Søgaard A, Ballantyne A, Pauwels R (2025) Federated learning, ethics, and the double black box problem in medical AI. arXiv preprint arXiv:2504.20656.
Neale EP, Middleton J, Lambert K (2020) Barriers and enablers to detection and management of chronic kidney disease in primary healthcare: a systematic review. BMC Nephrol 21(1):83. (PMID: 32160886706682010.1186/s12882-020-01731-x)
Bennett PN et al (2022) Global policy barriers and enablers to exercise and physical activity in kidney care. J Ren Nutr 32(4):441–449. (PMID: 3439307110.1053/j.jrn.2021.06.007)
Moreno-Sánchez PA (2023) Improvement of a prediction model for heart failure survival through explainable artificial intelligence. Front Cardiovasc Med 10:1219586. (PMID: 376000611043453410.3389/fcvm.2023.1219586)
Trejo MACW et al (2025) Explainability of a deep learning-based classification model for antineutrophil cytoplasmic autoantibody-associated glomerulonephritis. Kidney Int Rep 10(2):457–465. (PMID: 10.1016/j.ekir.2024.11.005)
Raina R et al (2024) Artificial intelligence in early detection and prediction of pediatric/neonatal acute kidney injury: current status and future directions. Pediatr Nephrol 39(8):2309–2324. (PMID: 3788928110.1007/s00467-023-06191-7)
Almeida MM, de Negreiros Kastrup BM, Santos IA, Destefani AC, Destefani VC (2024) Harnessing the power of artificial intelligence in pediatric nephrology: a comprehensive review of early detection, diagnosis, and management of kidney diseases. Rev Ibero-Am Hum Ciênc Educ 10(8):2532–2540.
Habchi Y et al (2024) Deep transfer learning for kidney cancer diagnosis. arXiv preprint arXiv:2408.04318.
Zhang X et al (2022) A transfer learning approach to correct the temporal performance drift of clinical prediction models: retrospective cohort study. JMIR Med Inform 10(11):e38053. (PMID: 36350705968550610.2196/38053)
Taroni JN et al (2019) MultiPLIER: a transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Syst 8(5):380–394. (PMID: 31121115653830710.1016/j.cels.2019.04.003)
Yang Y, Lin M, Zhao H, Peng Y, Huang F, Lu Z (2024) A survey of recent methods for addressing AI fairness and bias in biomedicine. J Biomed Inform 154:104646. (PMID: 386776331112991810.1016/j.jbi.2024.104646)
Farrand T, Mireshghallah F, Singh S, Trask A (2020) Neither private nor fair: Impact of data imbalance on utility and fairness in differential privacy. In: Proceedings of the 2020 workshop on privacy-preserving machine learning in practice, pp 15–19.
Shui C et al (2022) On learning fairness and accuracy on multiple subgroups. Adv Neural Inf Process Syst 35:34121–34135.
Brasil S, Pascoal C, Francisco R, dos Reis Ferreira V, Videira PA, Valadão G (2019) Artificial intelligence (AI) in rare diseases: is the future brighter? Genes 10(12):978. (PMID: 31783696694764010.3390/genes10120978)
Chen X, Burgun A, Boyer O, Knebelmann B, Garcelon N (2025) Artificial intelligence and perspective for rare genetic kidney diseases. Kidney Int. https://doi.org/10.1016/j.kint.2025.03.033. (PMID: 10.1016/j.kint.2025.03.03341033459)
El-Achkar TM et al (2021) A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiol Genomics 53(1):1–11. (PMID: 3319722810.1152/physiolgenomics.00104.2020)
Garabedian PM, Gannon MP, Aaron S, Wu E, Burns Z, Samal L (2022) Human-centered design of clinical decision support for management of hypertension with chronic kidney disease. BMC Med Inform Decis Mak 22(1):217. (PMID: 35964083937518910.1186/s12911-022-01962-y)
Prabhu D, Jeyakarthika K, Dinesh Babu M, Ezhilvendan M, Siva Subramanian R (2025) Enhancing transparency and trust in AI: the role of explainable AI and visualization techniques. In: 2025 11th international conference on communication and signal processing (ICCSP), IEEE, pp 19–24.
Rymaszewska J, Fila-Pawłowska K, Szcześniak D (2023) Chronic mental disorders: limitations and perspectives of prediction, prevention, diagnosis, and personalized treatment in psychiatry. In: Predictive, preventive, and personalised medicine: from bench to bedside. Springer, pp 261–282.
Hueso M, Álvarez R, Marí D, Ribas-Ripoll V, Lekadir K, Vellido A (2023) Is generative artificial intelligence the next step toward a personalized hemodialysis? Rev Investig Clin 75(6):309–317.
Cheungpasitporn W, Thongprayoon C, Kashani KB (2024) Artificial intelligence in heart failure and acute kidney injury: emerging concepts and controversial dimensions. Cardiorenal Med 14(1):147–159. (PMID: 38350433)
Belkhouribchia J, Pen JJ (2025) Large language models in clinical nutrition: an overview of its applications, capabilities, limitations, and potential future prospects. Front Nutr 12:1635682. (PMID: 408519031236776910.3389/fnut.2025.1635682)
Lee YK, Lee I, Shin M, Bae S, Hahn S (2024) Enhancing empathic reasoning of large language models based on psychotherapy models for AI-assisted social support. Korean J Cogn Sci 35(1):89–156. (PMID: 10.18284/jss.2024.08.43.2.89)
Luo M, Warren CJ, Cheng L, Abdul-Muhsin HM, Banerjee I (2024) Assessing empathy in large language models with real-world physician-patient interactions. In: 2024 IEEE international conference on big data (BigData), IEEE, pp 6510–6519.
Miao J, Thongprayoon C, Suppadungsuk S, Garcia Valencia OA, Cheungpasitporn W (2024) Integrating retrieval-augmented generation with large language models in nephrology: advancing practical applications. Medicina (B Aires) 60(3):445. (PMID: 10.3390/medicina60030445)
Garcia Valencia OA et al (2024) AI-driven translations for kidney transplant equity in Hispanic populations. Sci Rep 14(1):8511. (PMID: 386094761101498210.1038/s41598-024-59237-7)
Navaneethan SD et al (2016) Mortality outcomes of patients with chronic kidney disease and chronic obstructive pulmonary disease. Am J Nephrol 43(1):39–46. (PMID: 2689105310.1159/000444422)
Padmanabhan AA, Balczewski EA, Singh K (2022) Artificial intelligence systems in CKD: where do we stand and what will the future bring? Adv Chronic Kidney Dis 29(5):461–464. (PMID: 10.1053/j.ackd.2022.06.004)
Lu X, Yang C, Liang L, Hu G, Zhong Z, Jiang Z (2024) Artificial intelligence for optimizing recruitment and retention in clinical trials: a scoping review. J Am Med Inform Assoc 31(11):2749–2759. (PMID: 392599221149162410.1093/jamia/ocae243)
Tissot HC et al (2020) Natural language processing for mimicking clinical trial recruitment in critical care: a semi-automated simulation based on the LeoPARDS trial. IEEE J Biomed Health Inform 24(10):2950–2959. (PMID: 3214965910.1109/JBHI.2020.2977925)
Dalal YM, Amuthabala K, Ranjitha UN (2024) Precision medicine in nephrology: an exploratory study of machine learning models for accurate kidney disease prognosis. In: 2024 second international conference on advances in information technology (ICAIT), IEEE, pp 1–6.
Belladelli F et al (2025) A machine learning-based analysis for the definition of an optimal renal biopsy for kidney cancer. In: Urologic oncology: seminars and original investigations. Elsevier, pp 270-e1.
Feijoo F, Palopoli M, Bernstein J, Siddiqui S, Albright TE (2020) Key indicators of phase transition for clinical trials through machine learning. Drug Discov Today 25(2):414–421. (PMID: 3192631710.1016/j.drudis.2019.12.014)
Zhou C et al (2024) A comprehensive review of deep learning-based models for heart disease prediction. Artif Intell Rev 57(10):263. (PMID: 10.1007/s10462-024-10899-9)
Selvi S, Vanathi B. International Journal of Cognitive Computing in Engineering.
Iftikhar H, Khan M, Khan Z, Khan F, Alshanbari HM, Ahmad Z (2023) A comparative analysis of machine learning models: a case study in predicting chronic kidney disease. Sustainability 15(3):2754. (PMID: 10.3390/su15032754)
Alpaullivarez AA, Aurelia M, Monica S, Suri PA (2023) Analysis of machine learning algorithms in predicting chronic kidney diseases based on performance: a systematic literature review. In: 2023 4th international conference on artificial intelligence and data sciences (AiDAS), IEEE, pp 180–185.
Mendes JM, Barbar A, Refaie M (2025) Synthetic data generation: a privacy-preserving approach to accelerate rare disease research. Front Digit Health 7:1563991. (PMID: 401715261195897510.3389/fdgth.2025.1563991)
Su J et al (2025) Artificial intelligence in drug discovery: A comprehensive review with a case study on hyperuricemia, gout arthritis, and hyperuricemic nephropathy. arXiv preprint arXiv:2507.03407.
Miao J, Thongprayoon C, Suppadungsuk S, Garcia Valencia OA, Qureshi F, Cheungpasitporn W (2023) Ethical dilemmas in using AI for academic writing and an example framework for peer review in nephrology academia: a narrative review. Clin Pract 14(1):89–105. (PMID: 382484321080160110.3390/clinpract14010008)
Weitere Informationen
Chronic kidney disease (CKD) represents a major and expanding global health challenge, with prevalence rising due to aging populations, diabetes, hypertension, and environmental factors. Conventional risk assessment tools such as the CKD Epidemiology Collaboration equation and the Kidney Failure Risk Equation are limited in precision, generalizability, and their ability to identify rapid progressors in early stages. This review examines the transformative role of artificial intelligence (AI), encompassing machine learning, deep learning, natural language processing, and multimodal data integration, in improving CKD detection, progression prediction, and personalized management. Drawing on recent evidence, we highlight AI's capacity to process high‑dimensional data from electronic health records, imaging, omics, and wearable devices, achieving area under the curve values of 0.85-0.96 for predicting outcomes, such as end‑stage kidney disease and therapeutic response. Key applications include early CKD screening using gradient boosting and long short‑term memory networks, biomarker discovery through multi‑omics fusion, and precision phenotyping to guide targeted interventions such as sodium-glucose cotransporter‑2 inhibitor therapy and optimized dialysis initiation. Persistent challenges algorithmic bias, data privacy, interpretability, and regulatory compliance-necessitate strategies such as federated learning, explainable AI, and ethically guided, equitable implementation.
(© 2025. The Author(s), under exclusive licence to Springer Nature B.V.)
Declarations. Conflict of interest: The authors declare no competing interests. Ethics approval and consent to participate: Not applicable for this review article, as it does not involve human participants or animals. Consent for publication: Not applicable.