Treffer: Flavin Biosynthesis Enhances Extracellular Electron Transfer in Bioengineered Escherichia coli.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):4559-4564. (PMID: 29666254)
J Biol Chem. 2003 Jul 25;278(30):27758-65. (PMID: 12732647)
Nat Commun. 2019 Nov 18;10(1):5212. (PMID: 31740677)
J Bacteriol. 2010 Jan;192(2):467-74. (PMID: 19897659)
ACS Synth Biol. 2016 Jul 15;5(7):679-88. (PMID: 27000939)
Mol Microbiol. 2008 May;68(3):706-19. (PMID: 18394146)
Nature. 2022 Nov;611(7936):548-553. (PMID: 36323787)
J Mol Biol. 2009 Dec 11;394(4):644-52. (PMID: 19786035)
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73. (PMID: 18316736)
Front Bioeng Biotechnol. 2020 Oct 15;8:590667. (PMID: 33178679)
Biosens Bioelectron. 2014 Dec 15;62:320-4. (PMID: 25038536)
Phys Chem Chem Phys. 2007 Jun 7;9(21):2619-29. (PMID: 17627307)
J Mol Biol. 2009 Dec 11;394(4):653-80. (PMID: 19765592)
Biosensors (Basel). 2024 May 09;14(5):. (PMID: 38785713)
Biosens Bioelectron. 2020 Oct 1;165:112312. (PMID: 32729471)
ACS Synth Biol. 2015 Jul 17;4(7):815-23. (PMID: 25621739)
PLoS One. 2021 Nov 18;16(11):e0258380. (PMID: 34793478)
Environ Sci Technol. 2017 May 2;51(9):5082-5089. (PMID: 28414427)
Front Microbiol. 2022 Apr 12;13:855059. (PMID: 35495696)
Microb Cell Fact. 2019 Jan 28;18(1):15. (PMID: 30691454)
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19213-8. (PMID: 20956333)
Nat Rev Microbiol. 2009 May;7(5):375-81. (PMID: 19330018)
BMC Genomics. 2019 Oct 22;20(1):767. (PMID: 31640553)
J Am Chem Soc. 2017 Sep 6;139(35):12149-12152. (PMID: 28825808)
Biosens Bioelectron. 2017 Dec 15;98:338-344. (PMID: 28709085)
Nucleic Acids Res. 2011 Feb;39(3):1131-41. (PMID: 20843779)
J Biol Chem. 2009 Oct 16;284(42):28865-73. (PMID: 19661057)
Bioresour Technol. 2015 Jun;186:89-96. (PMID: 25812811)
Biochem Biophys Res Commun. 1998 Oct 29;251(3):744-7. (PMID: 9790980)
Adv Sci (Weinh). 2026 Jan;13(2):e2412230. (PMID: 41176478)
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16806-10. (PMID: 20837546)
Biotechnol Bioeng. 2017 Mar;114(3):526-532. (PMID: 27596754)
Nat Rev Microbiol. 2016 Oct;14(10):651-62. (PMID: 27573579)
Crit Rev Microbiol. 2017 Mar;43(2):196-209. (PMID: 27822970)
Microb Cell Fact. 2014 Jul 16;13:104. (PMID: 25027702)
Nat Methods. 2009 May;6(5):343-5. (PMID: 19363495)
TLM2976OFR (Riboflavin)
7N464URE7E (Flavin Mononucleotide)
Weitere Informationen
Advancements in bioengineering have unlocked new microbial electrochemical applications in energy, sensing, remediation, and synthesis. Key to realizing these technologies is the engineering of conduits in metabolically versatile microbes like Escherichia coli to enable efficient charge exchange with the electrode. Inspired by mechanisms found in natural exogelectrogens, previous studies have largely focused on introducing conduits based on the metal-reducing (Mtr) pathway in Shewanella oneidensis MR-1. This study explores the concomitant expression of flavin secretion pathways for mediated charge transfer to complement the direct charge transfer from the bioengineered Mtr pathway. The engineered strains show a 3-fold increase in the total secretion of flavin mononucleotide (FMN) and riboflavin compared to a state-of-the-art Mtr-expressing strain lacking flavin overexpression. The concomitant flavin secretion further contributes up to a ≈3.4- and ≈1.5-fold increase in current compared to unmodified cells and the previous Mtr-expressing cells, respectively, with the greatest currents achieved for the strain favoring riboflavin secretion over FMN secretion. The introduction of flavin biosynthesis genes to Mtr-expressing strains thus reveals a distinct, yet complementary, EET mechanism for robust and multi-modal microbial applications.
(© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)