Treffer: Choice of Processing Pipelines for T1-Weighted Brain MRI Impacts Association and Prediction Analyses.

Title:
Choice of Processing Pipelines for T1-Weighted Brain MRI Impacts Association and Prediction Analyses.
Authors:
Delzant E; Sorbonne Université, Institut du Cerveau - Paris Brain Institute, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France., Colliot O; Sorbonne Université, Institut du Cerveau - Paris Brain Institute, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France., Couvy-Duchesne B; Sorbonne Université, Institut du Cerveau - Paris Brain Institute, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
Source:
Human brain mapping [Hum Brain Mapp] 2025 Nov; Vol. 46 (16), pp. e70372.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Wiley Country of Publication: United States NLM ID: 9419065 Publication Model: Print Cited Medium: Internet ISSN: 1097-0193 (Electronic) Linking ISSN: 10659471 NLM ISO Abbreviation: Hum Brain Mapp Subsets: MEDLINE
Imprint Name(s):
Publication: New York : Wiley
Original Publication: New York : Wiley-Liss, c1993-
References:
Neuroimage. 2000 Jun;11(6 Pt 1):805-21. (PMID: 10860804)
Neuroimage. 2018 Feb 1;166:400-424. (PMID: 29079522)
Alcohol Res Health. 2000;24(4):242-9. (PMID: 15986719)
Hum Brain Mapp. 2017 Mar;38(3):1182-1190. (PMID: 27787929)
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):58-66. (PMID: 17354756)
Neuroimage. 2002 Oct;17(2):825-41. (PMID: 12377157)
Am J Epidemiol. 2017 Nov 1;186(9):1026-1034. (PMID: 28641372)
Schizophr Res. 2006 Apr;83(2-3):155-71. (PMID: 16448806)
Neuroimage. 2013 Jan 15;65:336-48. (PMID: 23041529)
Neuroimage. 2012 Aug 15;62(2):774-81. (PMID: 22248573)
Commun Biol. 2022 Sep 6;5(1):913. (PMID: 36068295)
Philos Trans R Soc Lond B Biol Sci. 2018 Mar 19;373(1742):. (PMID: 29352027)
Front Neurosci. 2012 Oct 11;6:149. (PMID: 23087605)
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):E5749-56. (PMID: 27613854)
J Med Imaging (Bellingham). 2022 Sep;9(5):052404. (PMID: 35610986)
Neuroimage. 2012 Aug 15;62(2):811-5. (PMID: 22521256)
J Sex Med. 2020 Sep;17(9):1761-1769. (PMID: 32690426)
PLoS One. 2013 Nov 25;8(11):e75362. (PMID: 24282498)
Genome Biol. 2019 May 28;20(1):107. (PMID: 31138268)
Nature. 2022 Mar;603(7902):654-660. (PMID: 35296861)
Gigascience. 2021 Jan 22;10(1):. (PMID: 33481004)
Neuroimage. 2021 Jan 1;224:117002. (PMID: 32502668)
Brain Res Bull. 2017 Apr;130:95-100. (PMID: 28088391)
Science. 2020 Aug 21;369(6506):988-992. (PMID: 32732281)
Nicotine Tob Res. 2008 Feb;10(2):267-78. (PMID: 18236291)
Neuroimage. 2014 Nov 15;102 Pt 2:424-34. (PMID: 25132021)
Neurosci Biobehav Rev. 2024 Jul;162:105716. (PMID: 38729281)
Front Hum Neurosci. 2023 Jan 05;16:1085986. (PMID: 36684830)
Neuroimage. 2023 Oct 1;279:120292. (PMID: 37572766)
Neuroimage. 1995 Jun;2(2):89-101. (PMID: 9343592)
Neuroimage. 2009 May 15;46(1):39-46. (PMID: 19457380)
Neuroimage. 2012 Aug 15;62(2):782-90. (PMID: 21979382)
Neuroimage. 2019 Nov 15;202:116137. (PMID: 31473352)
Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5. (PMID: 10984517)
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Aug;8(8):780-788. (PMID: 36906444)
Gigascience. 2024 Jan 2;13:. (PMID: 39102518)
Cortex. 2023 Jan;158:110-126. (PMID: 36516597)
Neuroimage. 2011 Feb 1;54(3):2033-44. (PMID: 20851191)
Transl Psychiatry. 2021 Jan 11;11(1):29. (PMID: 33431833)
Hum Brain Mapp. 2002 Jan;15(1):1-25. (PMID: 11747097)
Hum Brain Mapp. 2025 Nov;46(16):e70372. (PMID: 41163627)
Hum Brain Mapp. 2020 Oct 1;41(14):4062-4076. (PMID: 32687259)
Dev Psychobiol. 2015 Mar;57(2):212-25. (PMID: 25650169)
Grant Information:
101136607 Agence Nationale de la Recherche; ANR-10-IAIHU-06 Agence Nationale de la Recherche; ANR-19-P3IA-0001 Agence Nationale de la Recherche; 1161356 NMHRC; University of Queensland
Entry Date(s):
Date Created: 20251030 Date Completed: 20251030 Latest Revision: 20251101
Update Code:
20251101
PubMed Central ID:
PMC12572822
DOI:
10.1002/hbm.70372
PMID:
41163627
Database:
MEDLINE

Weitere Informationen

The growing availability of large neuroimaging datasets, such as the UK Biobank, provides new opportunities to improve robustness and reproducibility in brain imaging research. However, little is known about the extent to which MRI processing pipelines influence results. Using 39,655 T1-weighted MRI scans from the UK Biobank, we systematically compared five widely used gray-matter representations derived from three major software packages: FSL (volume-based), CAT12/SPM (volume- and surface-based), and FreeSurfer (cortical and subcortical surface-based). We assessed their impact on morphometricity (trait variance explained by brain features), susceptibility to imaging confounders, false positives, association findings, and prediction accuracy across 29 diverse traits, including lifestyle, metabolic, and disease-related variables. We found that all pipelines were sensitive to imaging confounders such as head motion, brain position, and signal-to-noise ratio, and many produced non-normal voxel or vertex distributions. FSL and FreeSurfer generally yielded higher morphometricity estimates, but each captured partially unique signals, leading to inconsistencies in brain regions identified across methods. Volume-based approaches tended to outperform surface-based ones, detecting more significant clusters, achieving higher replication rates, and producing stronger predictive performance. Small clusters (single voxels or vertices) were less reliable, suggesting caution in their interpretation. Among all methods, FSLVBM emerged as the most consistent all-rounder, maximizing morphometricity, replicability, and predictive accuracy. Our results highlight the strengths and limitations of commonly used processing pipelines, offering benchmarks to guide researchers in method selection. They further suggest that combining multiple pipelines may improve brain-based prediction by leveraging unique, complementary signals, and that careful treatment of imaging confounders is essential for robust large-scale neuroimaging analyses.
(© 2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.)