Treffer: Collective Response and Navigation Dynamics of Magnetospirillum gryphiswaldense under Rotating Magnetic Fields.
ACS Appl Mater Interfaces. 2024 Dec 11;16(49):67216-67224. (PMID: 39592122)
Eur Phys J E Soft Matter. 2021 Mar 23;44(3):40. (PMID: 33759003)
Biophys J. 2007 Aug 15;93(4):1402-12. (PMID: 17526564)
Annu Rev Microbiol. 1982;36:217-38. (PMID: 6128956)
Adv Mater. 2025 Jul;37(27):e2416966. (PMID: 40244080)
Biophys J. 2006 Jan 15;90(2):400-12. (PMID: 16239332)
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18355-9. (PMID: 19015518)
Small. 2019 Oct;15(41):e1902626. (PMID: 31454160)
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 2):056309. (PMID: 21230578)
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021505. (PMID: 16605340)
Nat Commun. 2014 Nov 14;5:5398. (PMID: 25394370)
Sci Rep. 2020 Aug 11;10(1):13578. (PMID: 32782266)
Nat Rev Microbiol. 2016 Sep 13;14(10):621-37. (PMID: 27620945)
FEMS Microbiol Rev. 2008 Jul;32(4):654-72. (PMID: 18537832)
Chem Rev. 2008 Nov;108(11):4875-98. (PMID: 18855486)
Nat Commun. 2021 Mar 31;12(1):1990. (PMID: 33790272)
Nat Commun. 2019 Nov 8;10(1):5082. (PMID: 31705050)
Nano Lett. 2013;13(11):5373-8. (PMID: 24127909)
Small. 2018 Feb;14(5):. (PMID: 29205792)
ACS Appl Mater Interfaces. 2023 Jan 18;15(2):2747-2759. (PMID: 36607241)
Nanoscale. 2018 Apr 26;10(16):7407-7419. (PMID: 29557439)
Biophys J. 2009 Aug 19;97(4):986-91. (PMID: 19686645)
Small. 2025 Dec;21(50):e09375. (PMID: 41147098)
ACS Appl Mater Interfaces. 2022 Mar 30;14(12):14049-14058. (PMID: 35311270)
Biophys J. 2014 Jul 15;107(2):527-538. (PMID: 25028894)
Weitere Informationen
Magnetotactic bacteria (MTB) are aquatic microorganisms that biomineralize magnetic nanoparticles called magnetosomes, organizing them into chains that enable navigation along geomagnetic field lines. Their self-propulsion, magnetic responsiveness, and preference for low-oxygen environments make them promising candidates as biohybrid microrobots for biomedical and environmental applications. However, controlling large populations of MTB simultaneously remains a significant challenge. This study analyzes over 30 000 trajectories of Magnetospirillum gryphiswaldense (MSR-1) under rotating magnetic fields (RMF) of varying strengths (0 - 1000 µT) and frequencies INLINEMATH to characterize individual and collective motility behaviors. Trajectories shift from rectilinear to circular with increasing field strength, while collective alignment emerges above 250 µT. At 1000 µT and INLINEMATH , up to 29.3% of bacteria align in the NorthSeeker (NS) direction and 23% in the South-Seeker (SS) direction. Angular dispersion decreases from ≈ 38.2° to ≈14.7° with increasing field strength, whereas higher RMF frequencies significantly reduce alignment. Swimming velocity remains stable across most conditions, showing a robust bimodal distribution centered near 21.5 and 45 µm s <sup>-1</sup> , with a deviation only under highest tested RMF condition. These findings reveal a collective dynamic dependent on the frequency and strength of the magnetic field and highlight that the individual response cannot be straightforwardly translated to collective dynamics.
(© 2025 The Author(s). Small published by Wiley‐VCH GmbH.)