Treffer: AI-based approach for heart failure readmission prediction using SCG, ECG, and GSR signals.
Iran J Public Health. 2022 Jul;51(7):1481-1493. (PMID: 36248309)
PLoS Comput Biol. 2018 Oct 10;14(10):e1006438. (PMID: 30303952)
Circulation. 1999 Aug 31;100(9):999-1008. (PMID: 10468532)
Am J Cardiol. 2014 Oct 15;114(8):1249-56. (PMID: 25150135)
J Am Coll Cardiol. 2009 Jul 28;54(5):375-85. (PMID: 19628111)
J Am Soc Echocardiogr. 2015 Jan;28(1):1-39.e14. (PMID: 25559473)
Eur Heart J. 2011 Sep;32(18):2225-7. (PMID: 21551157)
Card Fail Rev. 2017 Apr;3(1):7-11. (PMID: 28785469)
Eur Heart J. 2012 Jul;33(14):1718-20. (PMID: 21900293)
Pharmacoeconomics. 2020 Nov;38(11):1219-1236. (PMID: 32812149)
Circulation. 2022 May 3;145(18):e895-e1032. (PMID: 35363499)
Circ Heart Fail. 2020 Mar;13(3):e006513. (PMID: 32093506)
Circulation. 2000 Nov 14;102(20 Suppl 4):IV14-23. (PMID: 11080127)
JAMA. 2020 Aug 04;324(5):488-504. (PMID: 32749493)
Circ Heart Fail. 2021 Apr;14(4):e008335. (PMID: 33866827)
JACC Heart Fail. 2023 Oct;11(10):1320-1332. (PMID: 37354145)
ESC Heart Fail. 2019 Apr;6(2):428-435. (PMID: 30810291)
Physiol Meas. 2023 Feb 27;44(2):. (PMID: 36638534)
Front Bioinform. 2022 Jun 27;2:927312. (PMID: 36304293)
Mol Med. 2015 Jan 26;20:527-37. (PMID: 25222914)
Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49. (PMID: 10843903)
Psychophysiology. 1997 Nov;34(6):623-48. (PMID: 9401419)
Circulation. 2012 Jul 24;126(4):501-6. (PMID: 22825412)
IEEE J Biomed Health Inform. 2021 Nov;25(11):4175-4184. (PMID: 34077377)
Arch Intern Med. 2011 Jul 25;171(14):1238-43. (PMID: 21788541)
Auton Neurosci. 2013 Nov;178(1-2):50-9. (PMID: 23664242)
Circulation. 2020 Mar 3;141(9):e139-e596. (PMID: 31992061)
Biomedicines. 2022 Jan 24;10(2):. (PMID: 35203454)
Circ Heart Fail. 2018 Jan;11(1):e004313. (PMID: 29330154)
IEEE Trans Biomed Eng. 1985 Mar;32(3):230-6. (PMID: 3997178)
ESC Heart Fail. 2020 Oct;7(5):2894-2903. (PMID: 32729678)
Eur J Heart Fail. 2009 Sep;11(9):855-62. (PMID: 19654140)
Eur J Heart Fail. 2019 Nov;21(11):1306-1325. (PMID: 31523902)
BMC Cardiovasc Disord. 2018 May 2;18(1):74. (PMID: 29716540)
Front Physiol. 2018 May 18;9:546. (PMID: 29867582)
Sensors (Basel). 2018 Oct 19;18(10):. (PMID: 30347695)
J Am Coll Cardiol. 1991 Aug;18(2):464-72. (PMID: 1856414)
Pac Symp Biocomput. 2016;22:276-287. (PMID: 27896982)
Proc Natl Acad Sci U S A. 1978 Dec;75(12):5831-5. (PMID: 282605)
Heart Fail Rev. 2018 Jan;23(1):131-145. (PMID: 29124528)
Vibration. 2019 Mar;2(1):64-86. (PMID: 34113791)
Bioengineering (Basel). 2017 Apr 07;4(2):. (PMID: 28952511)
JACC Heart Fail. 2017 Mar;5(3):216-225. (PMID: 28254128)
Weitere Informationen
Objective. Heart failure (HF) is considered a global pandemic because of increasing prevalence, high mortality rate, frequent hospitalization, and associated economic burden. This study explores a noninvasive method that may help in managing HF patients by predicting HF readmission. Methods. Seismocardiogram (SCG) signal is the low-frequency chest vibration produced by the mechanical activity of the heart. SCG signal was acquired from 101 patients with HF, including those readmitted to the hospital during the study period. SCG signals were segmented into heartbeats and clustered based on respiration phases. Features were extracted from each cluster. Several conventional machine learning (ML) models were developed using selected SCG and heart rate variability features. Furthermore, SCG signals were transformed into images using a time-frequency distribution method. Images were used to train a deep learning model. The models were able to predict the readmission status of HF patients. Results. ML algorithms achieved higher accuracy than the deep learning model in classifying the readmitted and non-readmitted HF patients. K-nearest neighbor achieved the highest classification accuracy (89.4% accuracy, 87.8% sensitivity, 90.1% specificity, 78.2% precision, and 82.7% F 1-score). A detailed discussion of the extracted features was provided, correlating them with HF conditions. Conclusions . The study results suggest that SCG signals may be useful for readmission prediction of HF patients.
(Creative Commons Attribution license.)