Treffer: Longitudinal Developmental Outcomes of Children With Prelingual Single-Sided Deafness With and Without a Cochlear Implant and Recommendations for Follow-Up.
Original Publication: Baltimore, Williams & Wilkins.
Anne S., Lieu J. E. C., Cohen M. S. (2017). Speech and language consequences of unilateral hearing loss: A systematic review. Otolaryngol Head Neck Surg, 157, 572–579.
Archbold S. M., Nikolopoulos T. P., Lloyd-Richmond H. (2009). Long-term use of cochlear implant systems in paediatric recipients and factors contributing to non-use. Cochlear Implants Int, 10, 25–40.
Arndt S., Findeis L., Wesarg T., Aschendorff A., Speck I., Ketterer M. C., Rauch A. K. (2024). Long-term outcome of cochlear implantation in children with congenital, perilingual, and postlingual single-sided deafness. Ear Hear, 45, 316–328.
Arndt S., Prosse S., Laszig R., Wesarg T., Aschendorff A., Hassepass F. (2015). Cochlear implantation in children with single-sided deafness: Does aetiology and duration of deafness matter? Audiol Neurootol, 20, 21–30.
Arras T., Boudewyns A., Dhooge I., Offeciers E., Philips B., Desloovere C., Wouters J., van Wieringen A. (2021). Assessment of receptive and expressive language skills among young children with prelingual single-sided deafness managed with early cochlear implantation. JAMA Netw Open, 4, e2122591.
Arras T., Boudewyns A., Dhooge I., Zarowski A., Philips B., Desloovere C., Wouters J., van Wieringen A. (2023). Early cochlear implantation supports narrative skills of children with prelingual single-sided deafness. Sci Rep, 13, 17828.
Arras T., Boudewyns A., Dhooge I., Zarowski A., Philips B., Desloovere C., Wouters J., van Wieringen A. (2024a). Duration of cochlear implant use in children with prelingual single-sided deafness is a predictor of word perception in the CI ear. Hear Res, 450, 109076.
Arras T., Boudewyns A., Swinnen F., Zarowski A., Philips B., Desloovere C., Wouters J., van Wieringen A. (2022). Longitudinal auditory data of children with prelingual single-sided deafness managed with early cochlear implantation. Sci Rep, 12, 9376.
Arras T., Rachman L., van Wieringen A., Başkent D. (2024b). Perception of voice cues and speech-in-speech by children with prelingual single-sided deafness and a cochlear implant. Hear Res, 454, 109133.
Barr R., Hayne H. (2003). It’s not what you know, it’s who you know: Older siblings facilitate imitation during infancy. Int J Early Years Educ, 11, 7–21.
Bates D., Mächler M., Bolker B., Walker S (2015). Fitting linear mixed-effects models using lme4. J Stat Softw, 67.
Beck R. L., Aschendorff A., Hassepass F., Wesarg T., Kröger S., Jakob T. F., Arndt S. (2017). Cochlear implantation in children with congenital unilateral deafness: A case series. Otol Neurotol, 38, e570–e576.
Benchetrit L., Ronner E. A., Anne S., Cohen M. S. (2021). Cochlear implantation in children with single-sided deafness: A systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg, 147, 58–69.
Berger S. E., Nuzzo K. (2008). Older siblings influence younger siblings’ motor development. Infant Child Dev, 17, 607–615.
Bess F. H., Davis H., Camarata S., Hornsby B. W. Y. (2020). Listening-related fatigue in children with unilateral hearing loss. Lang Speech Hear Serv Sch, 51, 84–97.
Bess F. H., Tharpe A. M. (1984). Unilateral hearing impairment in children. Pediatrics, 74, 206–216.
Borsetto D., Corazzi V., Franchella S., Bianchini C., Pelucchi S., Obholzer R., Soulby A. J., Amin N., Ciorba A. (2021). The influence of hearing aids on balance control: A systematic review. Audiol Neurootol, 26, 209–217.
Brown K. D., Dillon M. T., Park L. R. (2022). Benefits of cochlear implantation in childhood unilateral hearing loss (CUHL trial). Laryngoscope, 132, S1–S18.
Bruininks R. H., Bruininks B. D. (2005). Bruininks-Oseretsky Test of Motor Proficiency, 2nd ed.). Pearson.
Cadieux J. H., Firszt B., Reeder M. (2013). Cochlear implantation in nontraditional candidates: Preliminary results in adolescents with asymmetric hearing loss. Otol Neurotol, 34, 408–415.
Contrera K. J., Choi J. S., Blake R., Betz J. F., Niparko J. K., Lin F. R. (2014). Rates of long-term cochlear implant use in children. Otol Neurotol, 35, 426–430.
Culbertson S. R., Dillon M. T., Richter M. E., Brown K. D., Anderson M. R., Hancock S. L., Park L. R. (2022). Younger age at cochlear implant activation results in improved auditory skill development for children with congenital deafness. J Speech Lang Hear Res, 65, 3539–3547.
Cushing S. L., Chia R., James A. L., Papsin B. C., Gordon K. A. (2008a). A test of static and dynamic balance function in children with cochlear implants: The vestibular olympics. Arch Otolaryngol Head Neck Surg, 134, 34–38.
Cushing S. L., Papain B. C., Rutka J. A., James A. L., Gordon K. A. (2008b). Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope, 118, 1814–1823.
Deep N. L., Gordon S. A., Shapiro W. H., Waltzman S. B., Roland J. T., Friedmann D. R. (2021). Cochlear implantation in children with single-sided deafness. Laryngoscope, 131, E271–E277.
Deitz J. C., Kartin D., Kopp K. (2007). Review of the Bruininks-Oseretsky test of motor proficiency, second edition (BOT-2). Phys Occup Ther Pediatr, 27, 87–102.
Dhondt C., Maes L., Rombaut L., Martens S., Vanaudenaerde S., Van Hoecke H., De Leenheer E., Dhooge I. (2021). Vestibular function in children with a congenital cytomegalovirus infection: 3 years of follow-up. Ear Hear, 42, 76–86.
Dhondt C., Maes L., Vanaudenaerde S., Martens S., Rombaut L., Van Hecke R., Valette R., Swinnen F., Dhooge I. (2022). Changes in vestibular function following pediatric cochlear implantation: A prospective study. Ear Hear, 43, 620–630.
Dollaghan C. A., Campbell T. F., Paradise J. L., Feldman H. M., Janosky J. E., Pitcairn D. N., Kurs-Lasky M. (1999). Maternal education and measures of early speech and language. J Speech Lang Hear Res, 42, 1432–1443.
Dollard S. C., Grosse S. D., Ross D. S. (2007). New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol, 17, 355–363.
Ead B., Hale S., DeAlwis D., Lieu J. E. C. (2013). Pilot study of cognition in children with unilateral hearing loss. Int J Pediatr Otorhinolaryngol, 77, 1856–1860.
Easwar V., Sanna H., Zhang V. W. (2024). Parent-reported ease of listening in preschool-aged children with bilateral and unilateral hearing loss. Ear Hear, 45, 1600–1612.
Fischer C., Lieu J. (2014). Unilateral hearing loss is associated with a negative effect on language scores in adolescents. Int J Pediatr Otorhinolaryngol, 78, 1611–1617.
Fox J., Weisberg S. (2019). An R Companion to Applied Regression (3rd ed.). Sage.
Ganek H., Cushing S. L., Papsin B. C., Gordon K. A. (2020). Cochlear implant use remains consistent over time in children with single-sided deafness. Ear Hear , 41, 678–685.
Gagnon E. B., Eskridge H., Brown K. D. (2020). Pediatric cochlear implant wear time and early language development. Cochlear Implants Int, 21, 92–97.
Garcia-Matte R. J., O’Neil L. M., Chase C., Leeming P., Clack R., Rodrigues S., Kuthubutheen J. (2024). Long-term cochlear implant sound processor usage in children with single-sided deafness. Otol Neurotol, 45, 392–397.
Goderis J., Keymeulen A., Smets K., Van Hoecke H., De Leenheer E., Boudewyns A., Desloovere C., Kuhweide R., Muylle M., Royackers L., Schatteman I., Dhooge I. (2016). Hearing in children with congenital cytomegalovirus infection: Results of a longitudinal study. J Pediatr, 172, 110–115.e2.
Gordon K. A., Alemu R., Papsin B. C., Negandhi J., Cushing S. L. (2023). Effects of age at implantation on outcomes of cochlear implantation in children with short durations of single-sided deafness. Otol Neurotol, 44, 233–240.
Gordon K., Henkin Y., Kral A. (2015). Asymmetric hearing during development: The aural preference syndrome and treatment options. Pediatrics, 136, 141–153.
Harding J. F. (2015). Increases in maternal education and low-income children’s cognitive and behavioral outcomes. Dev Psychol, 51, 583–599.
Hassepass F., Aschendorff A., Wesarg T., Kröger S., Laszig R., Beck R. L., Schild C., Arndt S. (2012). Unilateral deafness in children: Audiologic and subjective assessment of hearing ability after cochlear implantation. Otol Neurotol, 34, 53–60.
Hendriksen J., Hurks P. (2009). Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III-NL). Pearson.
Hurks P., Hendriksen J., Dek J., Kooij A (2010). De nieuwe Wechsler kleuter-intelligentietest voor 2 1/2- tot 8-jarigen. Tijdschrift Neuropsychol, 5, 40–51.
Justice L. M., Jiang H., Bates R., Koury A. (2020). Language disparities related to maternal education emerge by two years in a low-income sample. Matern Child Health J, 24, 1419–1427.
Karltorp E., Löfkvist U., Lewensohn-Fuchs I., Lindström K., Westblad M. E., Fahnehjelm K. T., Verrecchia L., Engman M. -L. (2014). Impaired balance and neurodevelopmental disabilities among children with congenital cytomegalovirus infection. Acta Paediatr, 103, 1165–1173.
Kelly A., Liu Z., Leonard S., Toner F., Adams M., Toner J. (2018). Balance in children following cochlear implantation. Cochlear Implants Int, 19, 22–25.
Kral A. (2013). Auditory critical periods: A review from system’s perspective. Neuroscience, 247, 117–133.
Kral A., Sharma A. (2012). Developmental neuroplasticity after cochlear implantation. Trends Neurosci, 35, 111–122.
Krombholz H. (2006). Physical performance in relation to age, sex, birth order, social class, and sports activities of preschool children. Percept Mot Skills, 102, 477–484.
Lanzieri T. M., Chung W., Flores M., Blum P., Caviness A. C., Bialek S. R., Grosse S. D., Miller J. A., Demmler-Harrison G.; Congenital Cytomegalovirus Longitudinal Study Group. (2017). Hearing loss in children with asymptomatic congenital cytomegalovirus infection. Pediatrics, 139, e20162610.
Lee H. J., Smieja D., Polonenko M. J., Cushing S. L., Papsin B. C., Gordon K. A. (2020). Consistent and chronic cochlear implant use partially reverses cortical effects of single sided deafness in children. Sci Rep, 10, 21526.
Lenth R. V. (2023). emmeans: Estimated Marginal Means. aka Least-Squares Means.
Lieu J. E. C. (2004). Speech-language and educational consequences of unilateral hearing loss in children. Arch Otolaryngol Head Neck Surg, 130, 524–530.
Lieu J. E. C. (2013). Unilateral hearing loss in children: Speech-language and school performance. B-ENT, (Suppl 21), 107–115.
Lieu J. E. C. (2015). Management of children with unilateral hearing loss. Otolaryngol Clin North Am, 48, 1011–1026.
Lieu J. E. C., Tye-Murray N., Karzon R. K., Piccirillo J. F. (2010). Unilateral hearing loss is associated with worse speech-language scores in children. Pediatrics, 125, e1348–e1355.
Magnuson K. A., Davis-Kean P. E., Huston A. C. (2009). Increases in maternal education and young children’s language skills. Merrill Palmer Q, 55, 319–350.
Martens S., Dhooge I., Dhondt C., Leyssens L., Sucaet M., Vanaudenaerde S., Rombaut L., Maes L. (2019). Vestibular infant screening—Flanders: The implementation of a standard vestibular screening protocol for hearing-impaired children in Flanders. Int J Pediatr Otorhinolaryngol, 120, 196–201.
Martens S., Dhooge I., Dhondt C., Vanaudenaerde S., Sucaet M., Rombaut L., Boudewyns A., Desloovere C., Janssens de Varebeke S., Vinck A., Vanspauwen R., Verschueren D., Foulon I., Staelens C., Van den Broeck K., Valck C., Deggouj N., Lemkens N., Haverbeke L., De Bock M., et al. (2020). Vestibular Infant Screening (VIS)–Flanders: results after 1.5 years of vestibular screening in hearing-impaired children. Sci Rep, 10, 21011.
Maurer C., Mergner T., Peterka R. J. (2006). Multisensory control of human upright stance. Exp Brain Res, 171, 231–250.
McSweeny C., Cushing S. L., Campos J. L., Papsin B. C., Gordon K. A. (2021). Functional consequences of poor binaural hearing in development: Evidence from children with unilateral hearing loss and children receiving bilateral cochlear implants. Trends Hear, 25, 1–17.
Melo R. de S, Lemos A., Raposo M. C. F., Belian R. B., Ferraz K. M. (2018). Balance performance of children and adolescents with sensorineural hearing loss: Repercussions of hearing loss degrees and etiological factors. Int J Pediatr Otorhinolaryngol, 110, 16–21.
Muck S., Magele A., Wirthner B., Schoerg P., Sprinzl G. M. (2023). Effects of auditory training and speech recognition in children with single-sided deafness and cochlear implants using a direct streaming device: A pilot study. J Pers Med, 13, 1688.
Nicloux M., Peterman L., Parodi M., Magny J. -F. (2020). Outcome and management of newborns with congenital cytomegalovirus infection. Arch Pediatr, 27, 160–165.
Parietti-Winkler C., Lion A., Montaut-Verient B., Grosjean R., Gauchard G. C. (2015). Effects of unilateral cochlear implantation on balance control and sensory organization in adult patients with profound hearing loss. Biomed Res Int, 2015, 621845.
Park L. R., Dillon M. T., Buss E., Brown K. D. (2023a). Two-year outcomes of cochlear implant use for children with unilateral hearing loss: Benefits and comparison to children with normal hearing. Ear Hear, 44, 955–968.
Park L. R., Gagnon E. B., Thompson E., Brown K. D. (2019). Age at full-time use predicts language outcomes better than age of surgery in children who use cochlear implants. Am J Audiol, 28, 986–992.
Park L. R., Dillon M. T., Buss E., O’Connell B. P., Brown K. D. (2021a). Spatial release from masking in pediatric cochlear implant recipients with single-sided deafness. Am J Audiol, 30, 443–451.
Park L. R., Gagnon E. B., Dillon M. T. (2023b). Factors that influence outcomes and device use for pediatric cochlear implant recipients with unilateral hearing loss. Front Hum Neurosci, 17, 1141065.
Park L. R., Preston E., Noxon A. S., Dillon M. T. (2021b). Comparison of test methods to assess the implanted ear alone for pediatric cochlear implant recipients with single-sided deafness. Cochlear Implants Int, 22, 283–290.
Patra K., Greene M. M., Patel A. L., Meier P. (2016). Maternal education level predicts cognitive, language, and motor outcome in preterm infants in the second year of life. Am J Perinatol, 33, 738–744.
Peng Z. E., Litovsky R. Y. (2022). Novel approaches to measure spatial release from masking in children with bilateral cochlear implants. Ear Hear, 43, 101–114.
Peterka R. J. (2002). Sensorimotor integration in human postural control. J Neurophysiol, 88, 1097–1118.
Pinninti S., Christy J., Almutairi A., Cochrane G., Fowler K. B., Boppana S. (2021). Vestibular, gaze, and balance disorders in asymptomatic congenital cytomegalovirus infection. Pediatrics, 147, e20193945.
Plontke S. K., Heider C., Koesling S., Hess S., Bieseke L., Goetze G., Rahne T. (2013). Cochlear implantation in a child with posttraumatic single-sided deafness. Eur Arch Otorhinolaryngol, 270, 1757–1761.
Polonenko M. J., Gordon K. A., Cushing S. L., Papsin B. C. (2017). Cortical organization restored by cochlear implantation in young children with single sided deafness. Sci Rep, 7, 16900.
Porter H., Sladen D. P., Ampah S. B., Rothpletz A., Bess F. H. (2013). Developmental outcomes in early school-age children with minimal hearing loss. Am J Audiol, 22, 263–270.
Propst E. J., Greinwald J. H., Schmithorst V. (2010). Neuroanatomic differences in children with unilateral sensorineural hearing loss detected using functional magnetic resonance imaging. Arch Otolaryngol Head Neck Surg, 136, 22–26.
Purcell P. L., Jones-Goodrich R., Wisneski M., Edwards T. C., Sie K. C. Y. (2016a). Hearing devices for children with unilateral hearing loss: Patient- and parent-reported perspectives. Int J Pediatr Otorhinolaryngol, 90, 43–48.
Purcell P. L., Shinn J. R., Davis G. E., Sie K. C. Y. (2016b). Children with unilateral hearing loss may have lower intelligence quotient scores: A meta-analysis. Laryngoscope, 126, 746–754.
R Core Team. (2023). R: A Language and Environment for Statistical Computing.
Rauch A. K., Arndt S., Aschendorff A., Beck R., Speck I., Ketterer M. C., Jakob T. F., Hassepass F. (2021). Long-term results of cochlear implantation in children with congenital single-sided deafness. Eur Arch Otorhinolaryngol, 278, 3245–3255.
Reeder R. M., Cadieux J., Firszt J. B. (2015). Quantification of speech-in-noise and sound localisation abilities in children with unilateral hearing loss and comparison to normal hearing peers. Audiol Neurootol, 20, 31–37.
Riga M., Korres G., Chouridis P., Naxakis S., Danielides V. (2018). Congenital cytomegalovirus infection inducing non-congenital sensorineural hearing loss during childhood; A systematic review. Int J Pediatr Otorhinolaryngol, 115, 156–164.
Ruscetta M. N., Arjmand E. M., Pratt S. R. (2005). Speech recognition abilities in noise for children with severe-to-profound unilateral hearing impairment. Int J Pediatr Otorhinolaryngol, 69, 771–779.
Sangen A., Dierckx A., Boudewyns A., Dhooge I., Offeciers E., Wouters J., Desloovere C., van Wieringen A. (2019). Longitudinal linguistic outcomes of toddlers with congenital single-sided deafness—Six with and twelve without cochlear implant and nineteen normal hearing peers. Clin Otolaryngol, 44, 671–676.
Sangen A., Royackers L., Desloovere C., Wouters J., van Wieringen A. (2017). Single-sided deafness affects language and auditory development—A case–control study. Clin Otolaryngol, 42, 979–987.
Santopietro G., Fancello V., Fancello G., Bianchini C., Pelucchi S., Ciorba A. (2024). Cochlear implantation in children affected by single-sided deafness: A comprehensive review. Audiol Res, 14, 77–85.
Spitzer E. R., Attlassy Y., Roland J. T., Waltzman S. B. (2024). Early cochlear implantation for children with single sided deafness. Int J Pediatr Otorhinolaryngol, 177, 111857.
Távora-Vieira D., Rajan G. P. (2016). Cochlear implantation in children with congenital unilateral deafness: Mid-term follow-up outcomes. Eur Ann Otorhinolaryngol Head Neck Dis, 133, S12–S14.
Telias A., Narea M., Abufhele A. (2022). A mediation analysis to disentangle relations between maternal education and early child development. Int J Behav Dev, 46, 568–575.
Thomas J. P., Neumann K., Dazert S., Voelter C. (2017). Cochlear implantation in children with congenital single-sided deafness. Otol Neurotol, 38, 496–503.
Tibbetts K., Banan E., Umansky A., Coalson R., Schlaggar B. L., Firszt J. B., Lieu J. E. (2011). Interregional brain interactions in children with unilateral hearing loss. Otolaryngol Head Neck Surg, 144, 602–611.
Van Deun L., van Wieringen A., Van den Bogaert T., Scherf F., Offeciers F. E., Van de Heyning P. H., Desloovere C., Dhooge I. J., Deggouj N., De Raeve L., Wouters J. (2009). Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing. Ear Hear, 30, 178–190.
Van Deun L., van Wieringen A., Wouters J. (2010). Spatial speech perception benefits in young children with normal hearing and cochlear implants. Ear Hear, 31, 702–713.
van Kleeck A., Lange A., Schwarz A. L. (2011). The effects of race and maternal education level on children’s retells of the Renfrew bus Story-North American edition. J Speech Lang Hear Res, 54, 1546–1561.
van Lieshout C., Abraham K., Smit A. L., Frederix G. W. J. (2024). A cost-utility analysis of cochlear implants for single sided deafness in adults and children in the Netherlands. PLoS One, 19, e0307881.
van Wieringen A., Boudewyns A., Sangen A., Wouters J., Desloovere C. (2019). Unilateral congenital hearing loss in children: Challenges and potentials. Hear Res, 372, 29–41.
Vanderauwera J., Hellemans E., Verhaert N. (2020). Research insights on neural effects of auditory deprivation and restoration of unilateral hearing loss: A systematic review. J Clin Med, 9, 812.
Verbeke G., Molenberghs G. (2000). Linear Mixed Models for Longitudinal Data. Springer.
Vitkovic J., Le C., Lee S. L., Clark R. A. (2016). The contribution of hearing and hearing loss to balance control. Audiol Neurootol, 21, 195–202.
Vos B., Noll D., Whittingham J., Pigeon M., Bagatto M., Fitzpatrick E. M. (2021). Cytomegalovirus—A risk factor for childhood hearing loss: A systematic review. Ear Hear, 42, 1447–1461.
Voss W., Jungmann T., Wachtendorf M., Neubauer A. P. (2012). Long-term cognitive outcomes of extremely low-birth-weight infants: The influence of the maternal educational background. Acta Paediatr, 101, 569–573.
Walker E. A., Redfern A., Oleson J. J. (2019). Linear mixed-model analysis to examine longitudinal trajectories in vocabulary depth and breadth in children who are hard of hearing. J Speech Lang Hear Res, 62, 525–542.
Wickham H., Averick M., Bryan J., Chang W., D’Agostino McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Lin Pedersen T., Miller E., Bache S. M., Müller K., Ooms J., Robinson D., Seidel D. P., Spinu V., Takahashi K., et al. (2019). Welcome to the Tidyverse. J Open Source Softw, 4, 1686.
Wolter N. E., Cushing S. L., Madrigal L. D. V., James A. L., Campos J., Papsin B. C., Gordon K. A. (2016). Unilateral hearing loss is associated with impaired balance in children: A pilot study. Otol Neurotol, 37, 1589–1595.
Zambrana I. M., Ystrom E., Pons F. (2012). Impact of gender, maternal education, and birth order on the development of language comprehension: A longitudinal study from 18 to 36 months of age. J Dev Behav Pediatr, 33, 146–155.
Zhang Y., Mao Z., Feng S., Liu X., Lan L., Zhang J., Yu X. (2018). Altered functional networks in long-term unilateral hearing loss: A connectome analysis. Brain Behav, 8, e00912.
Weitere Informationen
Objectives: Children with prelingual single-sided deafness (SSD) have difficulty understanding speech in noise and sound localization. They also have an increased risk of problems with their language and cognitive development. Moreover, untreated SSD can lead to cortical reorganization, that is, the aural preference syndrome. Providing these children with a cochlear implant (CI) at an early age may support improved outcomes across multiple domains. This longitudinal study aimed to identify those aspects of development that are especially at risk in children with SSD, and to determine whether early cochlear implantation affects the children's developmental outcomes.
Design: Over the past decade, 37 children with SSD completed regular auditory, language, cognitive, and balance assessments. Twenty of these children received a CI before the age of 2.5 yr. The same developmental outcomes were assessed in 33 children with bilateral normal hearing who served as a control group. The present study describes spatial hearing, cognitive, and postural balance development outcomes. These were assessed using standardized tests for speech perception in noise (speech reception threshold in three spatial conditions), sound localization (mean localization error in a nine-loudspeaker set-up), cognitive skills (Wechsler Preschool and Primary Scale of Intelligence), balance (Bruininks-Oseretsky Test of Motor Proficiency), and preoperative cervical vestibular evoked myogenic potentials.
Results: Longitudinal analysis showed that the children with SSD who did not receive a CI were at risk for poorer speech perception in noise, sound localization, and verbal intelligence quotient. On average, they had higher speech perception thresholds (1.6 to 16.8 dB, depending on the spatial condition), larger localization errors (35.4°), and lower verbal intelligence quotient scores (difference of 0.78 standard deviations). Children with SSD with a CI performed on par with the normal hearing children on the cognitive tests. In addition, they outperformed their nonimplanted peers with SSD on tests for speech perception in noise (up to 11.1 dB lower mean speech reception threshold, depending on spatial condition) and sound localization (9.5° smaller mean error). The children with SSD, with and without a CI achieved similar scores on behavioral tasks for postural balance.
Conclusions: The present study shows that early cochlear implantation can improve spatial hearing outcomes and facilitate typical neurocognitive development in children with prelingual SSD. Taken together with previously published data related to children's language development, the present results confirm that children with prelingual SSD can benefit from a CI provided at an early age to support their development across multiple domains. Several guidelines are suggested regarding the clinical follow-up and rehabilitation of these children.
(Copyright © 2025 The Authors. Ear & Hearing is published on behalf of the American Auditory Society, by Wolters Kluwer Health, Inc.)