Treffer: A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region.

Title:
A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region.
Authors:
Wändell P; Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, NVS Department, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Solna, Huddinge, Sweden., Carlsson AC; Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, NVS Department, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Solna, Huddinge, Sweden. axel.carlsson@ki.se.; Academic Primary Health Care Centre, Region Stockholm, Stockholm, Sweden. axel.carlsson@ki.se., Swärd P; Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden., Eriksson J; Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden., Ärnlöv J; Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, NVS Department, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Solna, Huddinge, Sweden.; School of Health and Social Studies, Dalarna University, Falun, Sweden., Rosenblad A; Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, NVS Department, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Solna, Huddinge, Sweden.; Regional Cancer Centre Stockholm-Gotland, Region Stockholm, Stockholm, Sweden.; Department of Medical Sciences, Division of Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden., Wachtler C; Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, NVS Department, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Solna, Huddinge, Sweden., Ruge T; Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, NVS Department, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Solna, Huddinge, Sweden.; Department of Emergency and Internal Medicine, Skånes University Hospital, Malmö, Sweden.; Department of Clinical Sciences Malmö, Department of Internal Medicine, Lund University, Skåne, Sweden.
Source:
Scientific reports [Sci Rep] 2025 Oct 20; Vol. 15 (1), pp. 36472. Date of Electronic Publication: 2025 Oct 20.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
Osteoporos Int. 2008 Jun;19(6):781-6. (PMID: 17985071)
J Endocrinol Invest. 2023 Dec;46(12):2535-2546. (PMID: 37171784)
J Am Geriatr Soc. 2016 Nov;64(11):2242-2250. (PMID: 27689675)
Osteoporos Int. 2019 Jan;30(1):3-44. (PMID: 30324412)
Biomed Eng Online. 2018 Jan 29;17(1):12. (PMID: 29378578)
Pain Res Manag. 2017;2017:9265259. (PMID: 28630567)
J Bone Miner Res. 2005 Apr;20(4):557-63. (PMID: 15765173)
J Clin Epidemiol. 2011 Jan;64(1):46-53. (PMID: 21130353)
Nat Genet. 2019 Feb;51(2):258-266. (PMID: 30598549)
Bone. 2021 Mar;144:115833. (PMID: 33359889)
J Clin Med Res. 2017 May;9(5):382-387. (PMID: 28392857)
Osteoporos Int. 2006 Dec;17(12):1726-33. (PMID: 16983459)
Lakartidningen. 2021 Oct 08;118:. (PMID: 34633058)
Osteoporos Int. 2012 Feb;23(2):411-22. (PMID: 21853371)
EClinicalMedicine. 2024 Apr 11;71:102584. (PMID: 38638398)
Diabetol Metab Syndr. 2021 Dec 20;13(1):148. (PMID: 34930452)
BMC Musculoskelet Disord. 2020 Feb 10;21(1):90. (PMID: 32041590)
J Orthop Sci. 2007 Jul;12(4):317-20. (PMID: 17657549)
Best Pract Res Clin Rheumatol. 2022 Sep;36(3):101777. (PMID: 36089481)
Curr Med Res Opin. 2023 Mar;39(3):387-398. (PMID: 36597741)
Osteoporos Int. 2000;11(8):669-74. (PMID: 11095169)
Spine (Phila Pa 1976). 1997 Dec 15;22(24 Suppl):12S-16S. (PMID: 9431639)
Osteoporos Int. 2023 Sep;34(9):1501-1529. (PMID: 37393412)
Osteoporos Int. 2018 Jan;29(1):89-99. (PMID: 29143131)
J Bone Miner Res. 2021 May;36(5):833-851. (PMID: 33751686)
Yonsei Med J. 2013 Nov;54(6):1321-30. (PMID: 24142634)
Prim Care Diabetes. 2024 Oct;18(5):501-505. (PMID: 38944562)
Sci Rep. 2023 Dec 9;13(1):21800. (PMID: 38066096)
Osteoporos Int. 2017 May;28(5):1531-1542. (PMID: 28168409)
Arch Osteoporos. 2020 Oct 23;15(1):169. (PMID: 33097976)
Reumatologia. 2023;61(4):294-304. (PMID: 37745139)
Osteoporos Int. 2012 Mar;23(3):879-85. (PMID: 21461720)
Osteoporos Int. 2004 Nov;15(11):897-902. (PMID: 15490120)
BMC Public Health. 2013 Jul 18;13:670. (PMID: 23866784)
Osteoporos Int. 2022 Aug;33(8):1725-1738. (PMID: 35451623)
Ther Adv Musculoskelet Dis. 2022 Mar 28;14:1759720X221083523. (PMID: 35368375)
J Orthop Surg Res. 2021 Oct 17;16(1):609. (PMID: 34657598)
Biomed Eng Online. 2023 Jul 10;22(1):68. (PMID: 37430259)
Curr Opin Rheumatol. 2019 Jul;31(4):368-375. (PMID: 31045948)
J Med Internet Res. 2023 Jan 13;25:e40179. (PMID: 36482780)
Bone. 2017 Nov;104:54-65. (PMID: 28285014)
Arch Osteoporos. 2023 Jun 29;18(1):89. (PMID: 37382649)
Am Fam Physician. 2016 Jul 1;94(1):44-50. (PMID: 27386723)
Nat Rev Endocrinol. 2014 Jun;10(6):338-51. (PMID: 24751883)
Osteoporos Int. 2019 Nov;30(11):2217-2223. (PMID: 31418061)
Arch Osteoporos. 2013;8:136. (PMID: 24113837)
J Clin Densitom. 2021 Jan-Mar;24(1):36-43. (PMID: 32792202)
J Bone Miner Res. 2018 Feb;33(2):250-260. (PMID: 28926125)
Fam Pract. 2013 Oct;30(5):506-13. (PMID: 23825186)
Endocrine. 2002 Feb;17(1):55-66. (PMID: 12014706)
Best Pract Res Clin Rheumatol. 2022 Sep;36(3):101775. (PMID: 36050210)
Aging Clin Exp Res. 2018 Jan;30(1):1-16. (PMID: 28374345)
Diabetes Metab Syndr Obes. 2023 Jun 30;16:1987-2003. (PMID: 37408729)
Contributed Indexing:
Keywords: Machine learning; Osteoporosis; Primary care; Vertebral fractures
Entry Date(s):
Date Created: 20251020 Date Completed: 20251210 Latest Revision: 20251210
Update Code:
20251210
PubMed Central ID:
PMC12537854
DOI:
10.1038/s41598-025-24450-5
PMID:
41115975
Database:
MEDLINE

Weitere Informationen

Improving accuracy and timeliness for osteoporosis diagnosis could help prevent fragility fractures, morbidity, and mortality for older individuals. Osteoporosis is an often silent health condition, especially as regards vertebral fractures, and WHO issued a call to action for primary care to lead efforts in screening, assessing, and managing diseases such as osteoporosis. We used a machine learning method, Stochastic Gradient Boosting (SGB), to identify what diagnoses in a primary care setting predict a new osteoporosis diagnosis, using a sex- and age-matched case-control design. Cases of new osteoporosis (ICD-10 code: M80, M81, M82) were identified across all outpatient care settings during 2012-2019. We included individuals aged ≥ 40 years old, stratified by sex and age-groups 40-65 years and > 65 years old. Controls were sampled from outpatients that did not have osteoporosis at any time during 2010-2019. Using the SGB model, we ranked the most important diagnoses related to newly diagnosed osteoporosis, presented as the normalized relative influence (NRI) score with a corresponding odds ratio of marginal effects (OR <subscript>ME</subscript> ) of being newly diagnosed with osteoporosis. A train-test approach was used to develop the model, with the performance evaluated using area under the curve (AUC). In total, we included 30,741 patients with osteoporosis aged ≥ 40 years. AUC was high, > 0.899 for all age and sex stratas. The number of visits to primary care in the year prior to the osteoporosis diagnosis contributed with the most predictive information for all age and sex stratas. For all age groups several other factors also showed high NRI and OR <subscript>ME</subscript> and among them many unspecific diagnoses such as Dorsalgia showed high NRI, (2.6-9.0%) and other painful musculoskeletal disorders. However, our study also showed that the diagnosis of Hypertension had a very high NRI for patients aged > 65 years but not in patients 40-65 years of age. In this AI study, including only diagnoses from patients seen in primary health care centres, we found that the number of consultations in primary care had high predictive information as well unspecific diagnoses including muscle and skeletal pain predicted high risk for osteoporosis in all age groups.
(© 2025. The Author(s).)

Declarations. Competing interests: The authors declare no competing interests. Ethics approval and consent to participate: The study was approved by the Swedish Ethical Review Authority and all data were pseudonymized to protect patient privacy (2021-01016 and later amendments), as with all register-based studies without recruitment of participants by invitation, a waiver of informed consent was granted.