Result: Statistical evidence in psychological networks.
Maas, H. L. J. et al. A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychol. Rev. 113, 842–861 (2006). (PMID: 1701430510.1037/0033-295X.113.4.842)
Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R. & Borsboom, D. The network approach to psychopathology: a review of the literature 2008–2018 and an agenda for future research. Psychol. Med. 50, 353–366 (2020). (PMID: 3187579210.1017/S0033291719003404)
Borsboom, D. & Cramer, A. O. J. Network analysis: an integrative approach to the structure of psychopathology. Ann. Rev. Clin. Psychol. 9, 91–121 (2013). (PMID: 10.1146/annurev-clinpsy-050212-185608)
Cramer, A. O. J. et al. Major depression as a complex dynamic system. PLoS ONE 11, e0167490 (2016). (PMID: 27930698514516310.1371/journal.pone.0167490)
Contreras, A., Nieto, I., Valiente, C., Espinosa, R. & Vazquez, C. The study of psychopathology from the network analysis perspective: a systematic review. Psychother. Psychosom. 88, 71–83 (2019). (PMID: 3088960910.1159/000497425)
Savi, A. O., Marsman, M., Maas, H. L. J. & Maris, G. K. J. The wiring of intelligence. Perspect. Psychol. Sci. 14, 1034–1061 (2019). (PMID: 31647746743369910.1177/1745691619866447)
Dalege, J., Borsboom, D., Harreveld, F. & Maas, H. L. J. The attitudinal entropy (AE) framework as a general theory of individual attitudes. Psychol. Inquiry 29, 175–193 (2018). (PMID: 10.1080/1047840X.2018.1537246)
Lauritzen, S.L. Graphical Models Vol. 17 (Clarendon, 1996).
van der Wal, J. M. et al. Advancing urban mental health research: from complexity science to actionable targets for intervention. Lancet Psychiatry 8, 991–1000 (2021). (PMID: 3462753210.1016/S2215-0366(21)00047-X)
Fried, E. I., Proppert, R. K. K. & Rieble, C. L. Building an early warning system for depression: rationale, objectives, and methods of the WARN-D study. Clin. Psychol. Eur. 5, 10075 (2023). (PMID: 10.32872/cpe.10075)
Roefs, A. et al. A new science of mental disorders: using personalised, transdiagnostic, dynamical systems to understand, model, diagnose and treat psychopathology. Behav. Res. Ther. 153, 104096 (2022). (PMID: 3550054110.1016/j.brat.2022.104096)
Marsman, M. & Rhemtulla, M. Guest editors’ introduction to the special issue “Network Psychometrics in Action”: methodological innovations inspired by empirical problems. Psychometrika 87, 1–11 (2022). (PMID: 35397084902114510.1007/s11336-022-09861-x)
Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).
Etz, A. & Vandekerckhove, J. A Bayesian perspective on the reproducibility project: psychology. PLoS ONE 11, 0149794 (2016). (PMID: 10.1371/journal.pone.0149794)
Wetzels, R. et al. Statistical evidence in experimental psychology: an empirical comparison using 855 t tests. Perspect. Psychol. Sci. 6, 291–298 (2011). (PMID: 2616851910.1177/1745691611406923)
McNally, R. J. Network analysis of psychopathology: controversies and challenges. Ann. Rev. Clin. Psychol. 17, 31–53 (2021). (PMID: 10.1146/annurev-clinpsy-081219-092850)
Fried, E. I. & Cramer, A. O. J. Moving forward: challenges and directions for psychopathological network theory and methodology. Perspect. Psychol. Sci. 12, 999–1020 (2017). (PMID: 2887332510.1177/1745691617705892)
Isvoranu, A.-M., Epskamp, S., Waldorp, L. & Borsboom, D. Network Psychometrics with R: A Guide for Behavioral and Social Scientists (Routledge, 2022).
Epskamp, S., Borsboom, D. & Fried, E. I. Estimating psychological networks and their accuracy: a tutorial paper. Behav. Res. Methods 50, 195–212 (2018). (PMID: 2834207110.3758/s13428-017-0862-1)
Bühlmann, P., Kalisch, M. & Meier, L. High-dimensional statistics with a view toward applications in biology. Ann. Rev. Stat. Appl. 1, 255–278 (2014). (PMID: 10.1146/annurev-statistics-022513-115545)
Jongerling, J., Epskamp, S. & Williams, D.R. Bayesian uncertainty estimation for Gaussian graphical models and centrality indices. Multivariate Behav. Res. 58, 311–339 (2022). (PMID: 3518003110.1080/00273171.2021.1978054)
Mohammadi, R. & Wit, E. C. Bayesian structure learning in sparse Gaussian graphical models. Bayesian Anal. 10, 109–138 (2015). (PMID: 10.1214/14-BA889)
Marsman, M., Bergh, D. & Haslbeck, J. M. B. Bayesian analysis of the ordinal Markov random field. Psychometrika 90, 146–182 (2025). (PMID: 10.1017/psy.2024.4)
Roverato, A. Cholesky decomposition of a hyper inverse Wishart matrix. Biometrika 87, 99–112 (2000). (PMID: 10.1093/biomet/87.1.99)
Williams, D. R. & Mulder, J. Bayesian hypothesis testing for Gaussian graphical models: conditional independence and order constraints. J. Math. Psychol. 99, 102441 (2020). (PMID: 10.1016/j.jmp.2020.102441)
Huth, K. et al. Bayesian analysis of cross-sectional networks: a tutorial in R and JASP. Adv. Methods Pract. Psychol. Sci. 6, 1–18 (2023).
Jones, P. J., Williams, D. R. & McNally, R. J. Sampling variability is not nonreplication: a Bayesian reanalysis of Forbes, Wright, Markon, and Krueger. Multivariate Behav. Res. 56, 249–255 (2021). (PMID: 3273176610.1080/00273171.2020.1797460)
Huth, K. B. S., Luigjes, J., Marsman, M., Goudriaan, A. E. & Holst, R. J. Modeling alcohol use disorder as a set of interconnected symptoms—assessing differences between clinical and population samples and across external factors. Addictive Behav. 125, 107128 (2021). (PMID: 10.1016/j.addbeh.2021.107128)
Chalmers, R. A. et al. Networks of inflammation, depression, and cognition in aging males and females. Aging Clin. Exp. Res. 34, 2387–2398 (2022). (PMID: 35895279963761810.1007/s40520-022-02198-6)
Sekulovski, N. et al. Testing conditional independence in psychometric networks: an analysis of three Bayesian methods. Multivariate Behav. Res. 59, 913–933 (2024). (PMID: 3873331910.1080/00273171.2024.2345915)
Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906 (2021). (PMID: 3378982610.1016/j.ijsu.2021.105906)
Jeffreys, H. Theory of Probability 3rd edn (Oxford Univ. Press, 1961).
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995). (PMID: 10.1080/01621459.1995.10476572)
Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2013).
Forbes, M. K., Wright, A. G. C., Markon, K. E. & Krueger, R. F. Evidence that psychopathology symptom networks have limited replicability. J. Abnorm. Psychol. 126, 969–988 (2017). (PMID: 29106281574992710.1037/abn0000276)
Borsboom, D. et al. False alarm? A comprehensive reanalysis of “Evidence that psychopathology symptom networks have limited replicability” by Forbes, Wright, Markon, and Krueger (2017). J. Abnorm. Psychol. 126, 989–999 (2017). (PMID: 2910628210.1037/abn0000306)
Forbes, M. K., Wright, A. G. C., Markon, K. E. & Krueger, R. F. Quantifying the reliability and replicability of psychopathology network characteristics. Multivariate Behav. Res. 56, 224–242 (2021). (PMID: 3114087510.1080/00273171.2019.1616526)
Fried, E. I. et al. Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: a cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clin. Psychol. Sci. 6, 335–351 (2018). (PMID: 29881651597470210.1177/2167702617745092)
Wagenmakers, E.-J., Morey, R. D. & Lee, M. D. Bayesian benefits for the pragmatic researcher. Curr. Dir. Psychol. Sci. 25, 169–176 (2016). (PMID: 10.1177/0963721416643289)
Wagenmakers, E.-J. et al. Bayesian inference for psychology. Part II: example applications with JASP. Psychon. Bull. Rev. 25, 58–76 (2018). (PMID: 2868527210.3758/s13423-017-1323-7)
Kuiper, R. M., Buskens, V., Raub, W. & Hoijtink, H. Combining statistical evidence from several studies: a method using Bayesian updating and an example from research on trust problems in social and economic exchange. Sociol. Methods Res. 42, 60–81 (2013). (PMID: 10.1177/0049124112464867)
Ly, A., Etz, A., Marsman, M. & Wagenmakers, E.-J. Replication Bayes factors from evidence updating. Behav. Res. Methods 51, 2498–2508 (2019). (PMID: 3010544510.3758/s13428-018-1092-x)
Stefan, A. M., Evans, N. J. & Wagenmakers, E.-J. Practical challenges and methodological flexibility in prior elicitation. Psychol. Methods 27, 177–197 (2022). (PMID: 3294051110.1037/met0000354)
Malgaroli, M., Calderon, A. & Bonanno, G. A. Networks of major depressive disorder: a systematic review. Clin. Psychol. Rev. 85, 102000 (2021). (PMID: 3372160610.1016/j.cpr.2021.102000)
Epskamp, S., Isvoranu, A.-M. & Cheung, M. W.-L. Meta-analytic Gaussian network aggregation. Psychometrika 87, 12–46 (2022). (PMID: 3426444910.1007/s11336-021-09764-3)
Isvoranu, A.-M., Epskamp, S. & Cheung, M. W.-L. Network models of posttraumatic stress disorder: a meta-analysis. J. Abnorm. Psychol. 130, 841–861 (2021). (PMID: 3484328910.1037/abn0000704)
Scholten, S., Lischetzke, T. & Glombiewski, J. A. Integrating theory-based and data-driven methods to case conceptualization: a functional analysis approach with ecological momentary assessment. Psychother. Res. 32, 52–64 (2022). (PMID: 10.1080/10503307.2021.1916639)
Schumacher, L., Burger, J., Echterhoff, J. & Kriston, L. Methodological and statistical practices of using symptom networks to evaluate mental health interventions: a review and reflections. Multivariate Behav. Res. 59, 663–676 (2024). (PMID: 3873330010.1080/00273171.2024.2335401)
Westhoff, M., Berg, M., Reif, A., Rief, W. & Hofmann, S. G. Major problems in clinical psychological science and how to address them. Introducing a multimodal dynamical network approach. Cogn. Ther. Res. 48, 791–807 (2024). (PMID: 10.1007/s10608-024-10487-9)
Mansueto, A. C., Wiers, R., Weert, J., Schouten, B. C. & Epskamp, S. Investigating the feasibility of idiographic network models. Psychol. Methods 28, 1052–1068 (2023). (PMID: 3499018910.1037/met0000466)
Waldorp, L. & Marsman, M. Relations between networks, regression, partial correlation, and the latent variable model. Multivariate Behav. Res. 57, 994–1006 (2022). (PMID: 3439731410.1080/00273171.2021.1938959)
Hoeting, J. A., Madigan, D., Raftery, A. E. & Volinsky, C. T. Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–417 (1999).
Hinne, M., Gronau, Q. F., Bergh, D. & Wagenmakers, E.-J. A conceptual introduction to Bayesian model averaging. Adv. Methods Pract. Psychol. Sci. 3, 200–215 (2020). (PMID: 10.1177/2515245919898657)
Kaplan, D. & Lee, C. Bayesian model averaging over directed acyclic graphs with implications for the predictive performance of structural equation models. Struct. Equ. Model. 23, 343–353 (2016). (PMID: 10.1080/10705511.2015.1092088)
Siepe, B. S., Kloft, M. & Heck, D. W. Bayesian estimation and comparison of idiographic network models. Psychol. Methods https://doi.org/10.1037/met0000672 (2024).
Scott, J. G. & Berger, J. O. Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Stat. 38, 2587–2619 (2010). (PMID: 10.1214/10-AOS792)
R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2024); www.R-project.org/.
Wickham, H. tidyverse: easily install and load the ‘tidyverse’. https://CRAN.R-project.org/package=tidyverse (2017).
Williams, D. R. & Mulder, J. BGGM: Bayesian Gaussian graphical models in R. J. Open Source Softw. 5, 2111 (2020). (PMID: 10.21105/joss.02111)
Huth, K., Keetelaar, S., Sekulovski, N., Bergh, D. & Marsman, M. Simplifying Bayesian analysis of graphical models for the social sciences with easybgm: a user-friendly R-package. Adv. Psychol. 2, 66366 (2024).
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012). (PMID: 10.18637/jss.v048.i04)
Haslbeck, J. & Waldorp, L. mgm: estimating time-varying mixed graphical models in high-dimensional data. J. Stat. Softw. 93, 1–49 (2015).
Borkulo, C. D. et al. A new method for constructing networks from binary data. Sci. Rep. 4, 5918 (2015). (PMID: 10.1038/srep05918)
Golino, H. F. & Epskamp, S. Exploratory graph analysis: a new approach for estimating the number of dimensions in psychological research. PLoS ONE 12, 0174035 (2017). (PMID: 10.1371/journal.pone.0174035)
Borsboom, D. A network theory of mental disorders. World Psychiatry 16, 5–13 (2017). (PMID: 28127906526950210.1002/wps.20375)
Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J. & Borsboom, D. Comorbidity: a network perspective. Behav. Brain Sci. 33, 137–193 (2010). (PMID: 2058436910.1017/S0140525X09991567)
Schmittmann, V. D. et al. Deconstructing the construct: a network perspective on psychological phenomena. N. Ideas Psychol. 31, 43–53 (2013). (PMID: 10.1016/j.newideapsych.2011.02.007)
Epskamp, S. & Fried, E. I. A tutorial on regularized partial correlation networks. Psychol. Methods 23, 617–634 (2017). (PMID: 10.1037/met0000167)
Dalege, J., Borsboom, D., Van Harreveld, F. & Van Der Maas, H. L. J. Network analysis on attitudes: a brief tutorial. Soc. Psychol. Person. Sci. 8, 528–537 (2017). (PMID: 10.1177/1948550617709827)
Costantini, G. et al. Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Person. Individ. Differ. 136, 68–78 (2019). (PMID: 10.1016/j.paid.2017.06.011)
Costantini, G. et al. State of the aRt personality research: a tutorial on network analysis of personality data in R. J. Res. Person. 54, 13–29 (2015). (PMID: 10.1016/j.jrp.2014.07.003)
Hevey, D. Network analysis: a brief overview and tutorial. Health Psychol. Behav. Med. 6, 301–328 (2018). (PMID: 34040834811440910.1080/21642850.2018.1521283)
Jones, P. J., Mair, P. & McNally, R. J. Visualizing psychological networks: a tutorial in R. Front. Psychol. 9, 1742 (2018). (PMID: 30283387615645910.3389/fpsyg.2018.01742)
Epskamp, S., Waldorp, L. J., Mõttus, R. & Borsboom, D. The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behav. Res. 53, 453–480 (2018). (PMID: 2965880910.1080/00273171.2018.1454823)
Dalege, J. et al. Toward a formalized account of attitudes: the causal attitude network (CAN) model. Psychol. Rev. 123, 2–22 (2016). (PMID: 2647970610.1037/a0039802)
Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016). (PMID: 27919275513914010.1186/s13643-016-0384-4)
Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012). (PMID: 2203921210.1093/bioinformatics/btr597)
Adamkovic, M. et al. Relationships between satisfaction with life, posttraumatic growth, coping strategies, and resilience in cancer survivors: a network analysis approach. Psychooncology 31, 1913–1921 (2022). (PMID: 35524705979033410.1002/pon.5948)
Alfimova, M. V., Lezheiko, T., Plakunova, V. & Golimbet, V. Relationships between schizotypal features, trait anticipatory and consummatory pleasure, and naturalistic hedonic states. Motiv. Emot. 45, 649–660 (2021). (PMID: 10.1007/s11031-021-09896-0)
Aslan, M., Sala, M., Gueorguieva, R. & Garrison, K. A. A network analysis of cigarette craving. Nicotine Tob. Res. 25, 1155–1163 (2023). (PMID: 367570931020264510.1093/ntr/ntad021)
Baggio, S. et al. Technology-mediated addictive behaviors constitute a spectrum of related yet distinct conditions: a network perspective. Psychol. Addict. Behav. 32, 564–572 (2018). (PMID: 3002418810.1037/adb0000379)
Baggio, S. et al. Gender differences in gambling preferences and problem gambling: a network-level analysis. Int. Gambl. Stud. 18, 512–525 (2018).
Baggio, S. et al. Testing the spectrum hypothesis of problematic online behaviors: a network analysis approach. Addict. Behav. 135, 107451 (2022). (PMID: 3593996310.1016/j.addbeh.2022.107451)
Berle, D., Starcevic, V., Wootton, B., Arnaez, S. & Baggio, S. A network approach to understanding obsessions and compulsions. J. Obses. Compuls. Relat. Disord. 36, 100786 (2023).
Billieux, J. et al. Positive and negative urgency as a single coherent construct: evidence from a large-scale network analysis in clinical and non-clinical samples. J. Person. 89, 1252–1262 (2021). (PMID: 3411465410.1111/jopy.12655)
Blinka, L., Stasek, A., Sablaturova, N., Sevcikova, A. & Husarova, D. Adolescents’ problematic internet and smartphone use in (cyber)bullying experiences: a network analysis. Child Adolesc. Ment. Health 28, 60–66 (2023). (PMID: 3652627010.1111/camh.12628)
Boonyarit, I. Linking self-leadership to proactive work behavior: a network analysis. Cogent Bus. Manage. 10, 2163563 (2023). (PMID: 10.1080/23311975.2022.2163563)
Briganti, G., Kempenaers, C., Braun, S., Fried, E. I. & Linkowski, P. Network analysis of empathy items from the interpersonal reactivity index in 1973 young adults. Psychiatry Res. 265, 87–92 (2018). (PMID: 2970230610.1016/j.psychres.2018.03.082)
Briganti, G. & Linkowski, P. Item and domain network structures of the resilience scale for adults in 675 university students. Epidemiol. Psychiatr. Sci. 29, e33 (2020). (PMID: 10.1017/S2045796019000222)
Briganti, G., Scutari, M. & Linkowski, P. A machine learning approach to relationships among alexithymia components. Psychiatr. Danub. 32, 180–187 (2020). (PMID: 32890387)
Briganti, G., Scutari, M. & Linkowski, P. Network structures of symptoms from the Zung depression scale. Psychol. Rep. 124, 1897–1911 (2021). (PMID: 3268658510.1177/0033294120942116)
Cardena, E., Gusic, S. & Cervin, M. A network analysis to identify associations between PTSD and dissociation among teenagers. J. Trauma Dissoc. 23, 432–450 (2022). (PMID: 10.1080/15299732.2021.1989122)
Cardoso-Leite, P., Buchard, A., Tissieres, I., Mussack, D. & Bavelier, D. Media use, attention, mental health and academic performance among 8 to 12 year old children. PLoS ONE 16, 0259163 (2021). (PMID: 10.1371/journal.pone.0259163)
Cascino, G. et al. The role of the embodiment disturbance in the anorexia nervosa psychopathology: a network analysis study. Brain Sci. 9, 276 (2019). (PMID: 31619011682641610.3390/brainsci9100276)
Charernboon, T. Interplay among positive and negative symptoms, neurocognition, social cognition, and functioning in clinically stable patients with schizophrenia: a network analysis. F1000Res. 10, 1258 (2022). (PMID: 902167610.12688/f1000research.74385.3)
Chen, S., Bi, K., Lyu, S., Sun, P. & Bonanno, G. A. Depression and PTSD in the aftermath of strict COVID-19 lockdowns: a cross-sectional and longitudinal network analysis. Eur. J. Psychotraumatol. 13, 2115635 (2022). (PMID: 36186164951863410.1080/20008066.2022.2115635)
Collins, A. C., Lass, A. N. S., Jordan, D. G. & Winer, E. S. Examining rumination, devaluation of positivity, and depressive symptoms via community-based network analysis. J. Clin. Psychol. 77, 2228–2244 (2021). (PMID: 3396042010.1002/jclp.23158)
Costantini, G. et al. Development of indirect measures of conscientiousness: combining a facets approach and network analysis. Eur. J. Person. 29, 548–567 (2015). (PMID: 10.1002/per.2014)
Costantini, G. & Perugini, M. The network of conscientiousness. J. Res. Person. 65, 68–88 (2016). (PMID: 10.1016/j.jrp.2016.10.003)
Costantini, G., Saraulli, D. & Perugini, M. Uncovering the motivational core of traits: the case of conscientiousness. Eur. J. Person. 34, 1073–1094 (2020). (PMID: 10.1002/per.2237)
Costantini, G., Di Sarno, M., Preti, E., Richetin, J. & Perugini, M. Would you rather be safe or free? Motivational and behavioral aspects in COVID-19 mitigation. Front. Psychol. 12, 635406 (2021). (PMID: 34122227819545910.3389/fpsyg.2021.635406)
Dal Santo, F. et al. Searching for bridges between psychopathology and real-world functioning in first-episode psychosis: a network analysis from the OPTiMiSE trial. Eur. Psychiatry 65, e33 (2022). (PMID: 35686446925181910.1192/j.eurpsy.2022.25)
Rosa-Caceres, A. et al. Examining the relationships between emotional disorder symptoms in a mixed sample of community adults and patients: a network analysis perspective. Curr. Psychol. 42, 16962–16972 (2023). (PMID: 10.1007/s12144-022-02907-4)
De Neve, D., Bronstein, M. V., Leroy, A., Truyts, A. & Everaert, J. Emotion regulation in the classroom: a network approach to model relations among emotion regulation difficulties, engagement to learn, and relationships with peers and teachers. J. Youth Adolesc. 52, 273–286 (2023). (PMID: 3618066110.1007/s10964-022-01678-2)
Dinic, B. M., Wertag, A., Tomasevic, A. & Sokolovska, V. Centrality and redundancy of the dark tetrad traits. Person. Indiv. Differ. 155, 109621 (2020). (PMID: 10.1016/j.paid.2019.109621)
Dinic, B. M., Wertag, A., Sokolovska, V. & Tomasevic, A. The good, the bad, and the ugly: revisiting the dark core. Curr. Psychol. 42, 4956–4968 (2023). (PMID: 10.1007/s12144-021-01829-x)
Dinic, B. M., Sokolovska, V. & Tomasevic, A. The narcissism network and centrality of narcissism features. Curr. Psychol. 41, 7990–8001 (2022). (PMID: 10.1007/s12144-020-01250-w)
Everaert, J. & Joormann, J. Emotion regulation difficulties related to depression and anxiety: a network approach to model relations among symptoms, positive reappraisal, and repetitive negative thinking. Clin. Psychol. Sci. 7, 1304–1318 (2019). (PMID: 10.1177/2167702619859342)
Faelens, L., Hoorelbeke, K., Fried, E., De Raedt, R. & Koster, E. H. W. Negative influences of Facebook use through the lens of network analysis. Comput. Hum. Behav. 96, 13–22 (2019). (PMID: 10.1016/j.chb.2019.02.002)
Faelens, L., Putte, E., Hoorelbeke, K., De Raedt, R. & Koster, E. H. W. A network analysis of Facebook use and well-being in relation to key psychological variables: replication and extension. Psychol. Pop. Media 10, 350–361 (2021). (PMID: 10.1037/ppm0000325)
Feraco, T., Sella, E., Meneghetti, C. & Cona, G. Adapt, explore, or keep going? The role of adaptability, curiosity, and perseverance in a network of study-related factors and scholastic success. J. Intell. 11, 34 (2023). (PMID: 36826932996102410.3390/jintelligence11020034)
Florean, I. S., Dobrean, A. & Roman, G. D. Early adolescents’ perceptions of parenting practices and mental health problems: a network approach. J. Fam. Psychol. 36, 438–448 (2022). (PMID: 3449889010.1037/fam0000919)
Forbes, M. K., Wright, A. G., Markon, K. E. & Krueger, R. F. Quantifying the reliability and replicability of psychopathology network characteristics. Multivariate Behav. Res. 56, 224–242 (2021). (PMID: 3114087510.1080/00273171.2019.1616526)
Funkhouser, C. J. et al. The replicability and generalizability of internalizing symptom networks across five samples. J. Abnorm. Psychol. 129, 191–203 (2020). (PMID: 3182963810.1037/abn0000496)
Gaggero, G., Dellantonio, S., Pastore, L., Sng, K. H. L. & Esposito, G. Shared and unique interoceptive deficits in high alexithymia and neuroticism. PLoS ONE 17, 0273922 (2022). (PMID: 10.1371/journal.pone.0273922)
Gamez-Guadix, M., Sorrel, M. A. & Martinez-Bacaicoa, J. Technology-facilitated sexual violence perpetration and victimization among adolescents: a network analysis. Sex. Res. Soc. Pol. 20, 1000–1012 (2023). (PMID: 10.1007/s13178-022-00775-y)
Ganai, U. J., Sachdev, S., Bhat, N. A. & Bhushan, B. Associations between posttraumatic stress symptoms and posttraumatic growth elements: a network analysis. Psychol. Trauma: Theor. Res. Pract. Pol. 16, 731–740 (2022). (PMID: 10.1037/tra0001411)
Giuntoli, L. & Vidotto, G. Exploring diener’s multidimensional conceptualization of well-being through network psychometrics. Psychol. Rep. 124, 896–919 (2021). (PMID: 3227656610.1177/0033294120916864)
Goclowska, M. A. et al. Awe arises in reaction to exceeded rather than disconfirmed expectancies. Emotion 23, 15–29 (2023). (PMID: 3480769510.1037/emo0001013)
Gojkovic, V., Dostanic, J. & Duric, V. Structure of darkness: the dark triad, the ‘dark’ empathy and the ‘narcissism’. Primen. Psihol. 15, 237–268 (2022).
Guineau, M. G., Jones, P. J., Bellet, B. W. & McNally, R. J. A network analysis of DSM-5 posttraumatic stress disorder symptoms and event centrality. J. Trauma. Stress 34, 654–664 (2021). (PMID: 3365019010.1002/jts.22664)
Guo, Z. et al. Applying network analysis to understand the relationships between impulsivity and social media addiction and between impulsivity and problematic smartphone use. Front. Psychiatry 13, 993328 (2022). (PMID: 36329911962316810.3389/fpsyt.2022.993328)
Hamilton, L. J. & Allard, E. S. Investigating mixed emotion elicitation across the life span via intensity and networks. Emotion 23, 1492–1500 (2023). (PMID: 3620179410.1037/emo0001177)
Holman, M. S. & Williams, M. N. Suicide risk and protective factors: a network approach. Archi. Suicide Res. 26, 137–154 (2020). (PMID: 10.1080/13811118.2020.1774454)
Hoorelbeke, K., Sun, X., Koster, E. H. W. & Dai, Q. Connecting the dots: a network approach to post-traumatic stress symptoms in Chinese healthcare workers during the peak of the coronavirus disease 2019 outbreak. Stress Health 37, 692–705 (2021). (PMID: 33434296801331610.1002/smi.3027)
Januska, J. et al. The interplay among paranoia, social relationships and negative affectivity in a heterogeneous clinical sample: a network analysis. J. Exp. Psychopathol. 12, 1–9 (2021). (PMID: 10.1177/20438087211067626)
Jones, P. J., Mair, P., Riemann, B. C., Mugno, B. L. & McNally, R. J. A network perspective on comorbid depression in adolescents with obsessive-compulsive disorder. J. Anxiety Disord. 53, 1–8 (2018). (PMID: 2912595710.1016/j.janxdis.2017.09.008)
Jones, P. J., Mair, P., Simon, T. & Zeileis, A. Network trees: a method for recursively partitioning covariance structures. Psychometrika 85, 926–945 (2020). (PMID: 3314678610.1007/s11336-020-09731-4)
Jordan, D. G., Winer, E. S., Zeigler-Hill, V. & Marcus, D. K. A network approach to understanding narcissistic grandiosity via the narcissistic admiration and rivalry questionnaire and the narcissistic personality inventory. Self Identity 21, 710–737 (2021). (PMID: 10.1080/15298868.2021.1944298)
Junghanel, M. et al. Conceptualizing anxiety and depression in children and adolescents: a latent factor and network analysis. Curr. Psychol. 43, 1248–1263 (2023). (PMID: 10.1007/s12144-023-04321-w)
Kacmar, P., Wolf, B., Bavol’ar, J., Schrotter, J. & Lovas, L. S-acriss r: Slovak adaptation of the action crisis scale. Curr. Psychol. 42, 18317–18332 (2022). (PMID: 10.1007/s12144-022-02955-w)
Kalamala, P., Chuderski, A., Szewczyk, J., Senderecka, M. & Wodniecka, Z. Bilingualism caught in a net: a new approach to understanding the complexity of bilingual experience. J. Exp. Psychol. Gen. 152, 157–174 (2023). (PMID: 3591387510.1037/xge0001263)
Kangaslampi, S., Peltonen, K. & Hall, J. Posttraumatic growth and posttraumatic stress—a network analysis among Syrian and Iraqi refugees. Eur. J. Psychotraumatol. 13, 2117902 (2022). (PMID: 36186157951850410.1080/20008066.2022.2117902)
Karr, J. E., Rodriguez, J. E., Goh, P. K., Martel, M. M. & Rast, P. The unity and diversity of executive functions: a network approach to life span development. Dev. Psychol. 58, 751–767 (2022). (PMID: 3534372010.1037/dev0001313)
Kashihara, J. & Sakamoto, S. Identifying the central components of perceived costs and benefits of helping peers with depression: a psychological network analysis using Japanese undergraduate samples. Jap. Psychol. Res. 65, 112–123 (2021). (PMID: 10.1111/jpr.12371)
Keidel, K., Ettinger, U., Murawski, C. & Polner, B. The network structure of impulsive personality and temporal discounting. J. Res. Person. 96, 104166 (2022). (PMID: 10.1016/j.jrp.2021.104166)
Knefel, M., Tran, U. S. & Lueger-Schuster, B. The association of posttraumatic stress disorder, complex posttraumatic stress disorder, and borderline personality disorder from a network analytical perspective. J. Anxiety Disord. 43, 70–78 (2016). (PMID: 2763707410.1016/j.janxdis.2016.09.002)
Kuczynski, A. M., Kanter, J. W. & Robinaugh, D. J. Differential associations between interpersonal variables and quality-of-life in a sample of college students. Qual. Life Res. 29, 127–139 (2020). (PMID: 3153526210.1007/s11136-019-02298-3)
Ladis, I., Gao, C. & Scullin, M. K. COVID-19-related news consumption linked with stress and worry, but not sleep quality, early in the pandemic. Psychol. Health Med. 28, 980–994 (2023). (PMID: 3632202710.1080/13548506.2022.2141281)
Lannoy, S. et al. What is binge drinking? Insights from a network perspective. Addict. Behav. 117, 106848 (2021). (PMID: 3358167610.1016/j.addbeh.2021.106848)
Lespine, L.-F. et al. Caregiving-related experiences associated with depression severity and its symptomatology among caregivers of individuals with a severe mental disorder: an online cross-sectional study. Eur. Arch. Psychiatry Clin. Neurosci. 273, 887–900 (2022). (PMID: 35771258924588210.1007/s00406-022-01451-3)
Lucarini, A., Fuochi, G. & Voci, A. A deep dive into compassion: Italian validation, network analysis, and correlates of recent compassion scales. Eur. J. Psychol. Assess. 39, 371–384 (2023). (PMID: 10.1027/1015-5759/a000717)
Lucarini, A. et al. The nature of deprovincialism: assessment, nomological network, and comparison of cultural and group deprovincialization. J. Community Appl. Soc. Psychol. 33, 868–881 (2023). (PMID: 10.1002/casp.2695)
Manson, J. H., Chua, K. J. & Lukaszewski, A. W. The structure of the Mini-K and K-SF-42 a psychological network approach. Hum. Nat. 31, 322–340 (2020). (PMID: 3279406610.1007/s12110-020-09373-6)
Manson, J. H. & Kruger, D. J. Network analysis of psychometric life history indicators. Evol. Hum. Behav. 43, 197–211 (2022). (PMID: 10.1016/j.evolhumbehav.2022.01.004)
Marchetti, I. Hopelessness: a network analysis. Cogn. Ther. Res. 43, 611–619 (2019). (PMID: 10.1007/s10608-018-9981-y)
Martarelli, C. S., Bertrams, A. & Wolff, W. A personality trait-based network of boredom, spontaneous and deliberate mind-wandering. Assessment 28, 1915–1931 (2021). (PMID: 3262803610.1177/1073191120936336)
Martarelli, C. S., Baillifard, A. & Audrin, C. A trait-based network perspective on the validation of the French short boredom proneness scale. Eur. J. Psychol. Assess. 39, 390–399 (2023). (PMID: 10.1027/1015-5759/a000718)
Martel, M. M., Goh, P. K., Lee, C. A., Karalunas, S. L. & Nigg, J. T. Longitudinal attention-deficit/hyperactivity disorder symptom networks in childhood and adolescence: key symptoms, stability, and predictive validity. J. Abnorm. Psychol. 130, 562–574 (2021). (PMID: 34472891848039510.1037/abn0000661)
Martela, F., Bradshaw, E. L. & Ryan, R. M. Expanding the map of intrinsic and extrinsic aspirations using network analysis and multidimensional scaling: examining four new aspirations. Front. Psychol. 10, 2174 (2019). (PMID: 31681060679762810.3389/fpsyg.2019.02174)
Martini, M., Marzola, E., Brustolin, A. & Abbate-Daga, G. Feeling imperfect and imperfectly feeling: a network analysis on perfectionism, interoceptive sensibility, and eating symptomatology in anorexia nervosa. Eur. Eat. Disord. Rev. 29, 893–909 (2021). (PMID: 3451065110.1002/erv.2863)
Mattsson, M., Hailikari, T. & Parpala, A. All happy emotions are alike but every unhappy emotion is unhappy in its own way: a network perspective to academic emotions. Front. Psychol. 11, 742 (2020). (PMID: 32425855720350010.3389/fpsyg.2020.00742)
McNally, R. J., Heeren, A. & Robinaugh, D. J. A Bayesian network analysis of posttraumatic stress disorder symptoms in adults reporting childhood sexual abuse. Eur. J. Psychotraumatol. 8, 1341276 (2017). (PMID: 29038690563278010.1080/20008198.2017.1341276)
McNally, R. J., Mair, P., Mugno, B. L. & Riemann, B. C. Co-morbid obsessive-compulsive disorder and depression: a Bayesian network approach. Psychol. Med. 47, 1204–1214 (2017). (PMID: 2805277810.1017/S0033291716003287)
McNally, R. J., Robinaugh, D. J., Deckersbach, T., Sylvia, L. G. & Nierenberg, A. A. Estimating the symptom structure of bipolar disorder via network analysis: energy dysregulation as a central symptom. J. Psychopathol. Clin. Sci. 131, 86–97 (2022). (PMID: 3487102410.1037/abn0000715)
Menu, I., Rezende, G., Le Stanc, L., Borst, G. & Cachia, A. A network analysis of executive functions before and after computerized cognitive training in children and adolescents. Sci. Rep. 12, 14660 (2022). (PMID: 36038599942421610.1038/s41598-022-17695-x)
Meier, M. et al. Obsessive-compulsive symptoms in eating disorders: a network investigation. Int. J. Eat. Disord. 53, 362–371 (2020). (PMID: 3174919910.1002/eat.23196)
Mertens, G., Duijndam, S., Smeets, T. & Lodder, P. The latent and item structure of COVID-19 fear: a comparison of four COVID-19 fear questionnaires using SEM and network analyses. J. Anxiety Disord. 81, 102415 (2021). (PMID: 33962142809172810.1016/j.janxdis.2021.102415)
Modafferi, C., Passarelli, M. & Chiorri, C. Untying a gordian knot: exploring the nomological network of resilience. J. Person. 91, 823–837 (2023). (PMID: 3615201210.1111/jopy.12778)
Monteleone, A. M. et al. The association between childhood maltreatment and eating disorder psychopathology: a mixed-model investigation. Eur. Psychiatry 61, 111–118 (2019). (PMID: 3143767210.1016/j.eurpsy.2019.08.002)
Muller, H. et al. Bridging the phenomenological gap between predictive basic-symptoms and attenuated positive symptoms: a cross-sectional network analysis. Schizophrenia 8, 68 (2022). (PMID: 36002447940262810.1038/s41537-022-00274-4)
Murga, C., Cabezas, R., Mora, C., Campos, S. & Nunez, D. Examining associations between symptoms of eating disorders and symptoms of anxiety, depression, suicidal ideation, and perceived family functioning in university students: a brief report. Int. J. Eat. Disord. 56, 783–789 (2023). (PMID: 3590699210.1002/eat.23787)
Nguyen, M. T. et al. Self-control as an important factor affecting the online learning readiness of Vietnamese medical and health students during the COVID-19 pandemic: a network analysis. J. Educ. Eval. Health Prof. 19, 22 (2022). (PMID: 36002389958229810.3352/jeehp.2022.19.22)
Pasarelu, C.-R., Dobrean, A., Florean, I. S. & Predescu, E. Parental stress and child mental health: a network analysis of Romanian parents. Curr. Psychol. 42, 24275–24287 (2022). (PMID: 10.1007/s12144-022-03520-1)
Peng, P. et al. Night shifts, insomnia, anxiety, and depression among Chinese nurses during the COVID-19 pandemic remission period: a network approach. Front. Publ. Health 10, 1040298 (2022). (PMID: 10.3389/fpubh.2022.1040298)
Pulopulos, M. M. et al. The interplay between self-esteem, expectancy, cognitive control, rumination, and the experience of stress: a network analysis. Curr. Psychol. 42, 15403–15411 (2023). (PMID: 10.1007/s12144-022-02840-6)
Putwain, D. W., Stockinger, K., von der Embse, N. P., Suldo, S. M. & Daumiller, M. Test anxiety, anxiety disorders, and school-related wellbeing: manifestations of the same or different constructs? J. School Psychol. 88, 47–67 (2021).
Ramos-Veram, C., Quispe Callo, G., Basauri Delgado, M., Vallejos Saldarriaga, J. & Saintila, J. Factorial and network structure of the Reynolds adolescent depression scale (RADS-2) in Peruvian adolescents. PLoS ONE 18, 0286081 (2023).
Roca, P., Diez, G., McNally, R. J. & Vazquez, C. The impact of compassion meditation training on psychological variables: a network perspective. Mindfulness 12, 873–888 (2021). (PMID: 10.1007/s12671-020-01552-x)
Rogowska, A. M. et al. Network analysis of well-being dimensions in vaccinated and unvaccinated samples of university students from Poland during the fourth wave of the COVID-19 pandemic. Vaccines 10, 1334 (2022). (PMID: 36016222941462910.3390/vaccines10081334)
Rozgonjuk, D., Davis, K. L. & Montag, C. The roles of primary emotional systems and need satisfaction in problematic internet and smartphone use: a network perspective. Front. Psychol. 12, 709805 (2021). (PMID: 34531797843811210.3389/fpsyg.2021.709805)
Rozgonjuk, D., Sindermann, C., Elhai, J. D. & Montag, C. Individual differences in fear of missing out (FOMO): age, gender, and the big five personality trait domains, facets, and items. Person. Individ. Differ. 171, 110546 (2021). (PMID: 10.1016/j.paid.2020.110546)
Rozgonjuk, D. et al. Differences between problematic internet and smartphone use and their psychological risk factors in boys and girls: a network analysis. Child Adolesc. Psychiatry Ment. Health 17, 69 (2023). (PMID: 373090111026245310.1186/s13034-023-00620-z)
Ruan, Q.-N., Chen, C., Jiang, D.-G., Yan, W.-J. & Lin, Z. A network analysis of social problem-solving and anxiety/depression in adolescents. Front. Psychiatry 13, 921781 (2022). (PMID: 36032238940109810.3389/fpsyt.2022.921781)
Ruan, Q.-N., Chen, Y.-H. & Yan, W.-J. A network analysis of difficulties in emotion regulation, anxiety, and depression for adolescents in clinical settings. Child Adolesc. Psychiatry Ment. Health 17, 29 (2023). (PMID: 36814344994535710.1186/s13034-023-00574-2)
Rubin, M. et al. Exploratory and confirmatory Bayesian networks identify the central role of non-judging in symptoms of depression. Mindfulness 12, 2544–2551 (2021). (PMID: 34426752837411410.1007/s12671-021-01726-1)
Nariman, H. S. et al. Anti-Roma bias (stereotypes, prejudice, behavioral tendencies): a network approach toward attitude strength. Front. Psychol. 11, 2071 (2020). (PMID: 10.3389/fpsyg.2020.02071)
Sanchez-Castello, M., Navas, M. & Rojas, A. J. Intergroup attitudes and contact between Spanish and immigrant-background adolescents using network analysis. PLoS ONE 17, 0271376 (2022). (PMID: 10.1371/journal.pone.0271376)
Santoro, G. et al. Psychometric properties of the multidimensional assessment of COVID-19-related fears (MAC-RF) in French-speaking healthcare professionals and community adults. Swiss Psychol. Open 3, 7 (2023).
Schellekens, M. P. J. et al. Exploring the interconnectedness of fatigue, depression, anxiety and potential risk and protective factors in cancer patients: a network approach. J. Behav. Med. 43, 553–563 (2020). (PMID: 3143589210.1007/s10865-019-00084-7)
Schwaba, T., Rhemtulla, M., Hopwood, C. J. & Bleidorn, W. A facet atlas: visualizing networks that describe the blends, cores, and peripheries of personality structure. PLoS ONE 15, 0236893 (2020). (PMID: 10.1371/journal.pone.0236893)
Slotta, T., Witthoeft, M., Gerlach, A. L. & Pohl, A. The interplay of interoceptive accuracy, facets of interoceptive sensibility, and trait anxiety: a network analysis. Person. Individ. Differ. 183, 111133 (2021). (PMID: 10.1016/j.paid.2021.111133)
Smetter, J. B., Antler, C. A., Young, M. A. & Rohan, K. J. The symptom structure of seasonal affective disorder: integrating results from factor and network analyses in the context of the dual vulnerability model. J. Psychopathol. Behav. Assess. 43, 95–107 (2021). (PMID: 10.1007/s10862-020-09861-0)
Smith, J. H., Kempton, H. M., Williams, M. N. & Ommen, C. Mindfulness as practice: a network analysis of FMI data. Couns. Psychother. Res. 21, 899–909 (2021). (PMID: 10.1002/capr.12400)
Soto-Sanfiel, M. T., Villegas-Simon, I. & Angulo-Brunet, A. Correlational network visual analysis of adolescents’ film entertainment responses. Commun. Soc. 34, 157–175 (2021). (PMID: 10.15581/003.34.1.157-175)
Specker, E., Fried, E. I., Rosenberg, R. & Leder, H. Associating with art: a network model of aesthetic effects. Collabra Psychol. 7, 24085 (2021). (PMID: 10.1525/collabra.24085)
Spritzer, D. T. et al. The self-perception of text message dependence scale (STDS): a Brazilian-Portuguese validation and expansion of its psychometric properties. Curr.t Psychol. 42, 17670–17681 (2023). (PMID: 10.1007/s12144-022-02957-8)
Thompson, J. J. Application of network analysis to description and prediction of assessment outcomes. Measure. Interdiscip. Res. Perspect. 20, 121–138 (2022). (PMID: 10.1080/15366367.2021.1971024)
Thone, A.-K. et al. Identifying symptoms of ADHD and disruptive behavior disorders most strongly associated with functional impairment in children: a symptom-level approach. J. Psychopathol. Behav. Assess. 45, 277–293 (2023). (PMID: 10.1007/s10862-023-10025-z)
Tosi, G. et al. Complexity in neuropsychological assessments of cognitive impairment: a network analysis approach. Cortex 124, 85–96 (2020). (PMID: 3184688910.1016/j.cortex.2019.11.004)
Troche, S. J., Gugelberg, H. M., Pahud, O. & Rammsayer, T. H. Do executive attentional processes uniquely or commonly explain psychometric g and correlations in the positive manifold? A structural equation modeling and network-analysis approach to investigate the process overlap theory. J. Intell. 9, 37 (2021). (PMID: 34287322829343610.3390/jintelligence9030037)
Bergh, N., Marchetti, I. & Koster, E. H. W. Bridges over troubled waters: mapping the interplay between anxiety, depression and stress through network analysis of the DASS-21. Cogn. Ther. Res. 45, 46–60 (2021). (PMID: 10.1007/s10608-020-10153-w)
Hallen, R., Jongerling, J. & Godor, B. P. Coping and resilience in adults: a cross-sectional network analysis. Anxiety Stress Coping 33, 479–496 (2020). (PMID: 3254600810.1080/10615806.2020.1772969)
Hallen, R., De Pauw, S. S. W. & Prinzie, P. Coping, (mal)adaptive personality and identity in young adults: a network analysis. Dev. Psychopathol. 36, 736–749 (2024). (PMID: 3679442710.1017/S0954579423000020)
Wei, X. et al. The relationship between components of neuroticism and problematic smartphone use in adolescents: a network analysis. Person. Individ. Differ. 186, 111325 (2022). (PMID: 10.1016/j.paid.2021.111325)
Werner, M., Stulhofer, A., Waldorp, L. & Jurin, T. A network approach to hypersexuality: insights and clinical implications. J. Sex. Med. 15, 373–386 (2018). (PMID: 2950298310.1016/j.jsxm.2018.01.009)
West, S. J. & Chester, D. S. The tangled webs we wreak: examining the structure of aggressive personality using psychometric networks. J. Person. 90, 762–780 (2022). (PMID: 3491927510.1111/jopy.12695)
Williams, M. N., Marques, M. D., Hill, S. R., Kerr, J. R. & Ling, M. Why are beliefs in different conspiracy theories positively correlated across individuals? Testing monological network versus unidimensional factor model explanations. British J. Soc. Psychol. 61, 1011–1031 (2022). (PMID: 10.1111/bjso.12518)
Wilt, J. A., Cooper, E. B., Grubbs, J. B., Exline, J. J. & Pargament, K. I. Associations of perceived addiction to internet pornography with religious/spiritual and psychological functioning. Sex. Addict. Compuls. 23, 260–278 (2016). (PMID: 10.1080/10720162.2016.1140604)
Wolff, W. et al. A single item measure of self-control—validation and location in a nomological network of self-control, boredom, and if-then planning. Soc. Psychol. Bull. 17, 1–22 (2022). (PMID: 10.32872/spb.7453)
Xie, T., Wen, J., Liu, X., Wang, J. & Poppen, P. J. Utilizing network analysis to understand the structure of depression in Chinese adolescents: replication with three depression scales. Curr. Psychol. 42, 21597–21608 (2022). (PMID: 10.1007/s12144-022-03201-z)
Zhao, Y.-J. et al. The backbone symptoms of depression: a network analysis after the initial wave of the COVID-19 pandemic in Macao. PeerJ 10, 13840 (2022). (PMID: 10.7717/peerj.13840)
Lauritzen, S. L. & Wermuth, N. Graphical models for associations between variables, some of which are qualitative and some quantitative. Ann. Stat. 17, 31–57 (1989).
Mohammadi, R., Abegaz, F., Heuvel, E. & Wit, E. C. Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models. J. R. Stat. Soc. C 66, 629–645 (2017). (PMID: 10.1111/rssc.12171)
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H. & Grasman, R. Bayesian hypothesis testing for psychologists: a tutorial on the Savage–Dickey method. Cogn. Psychol. 60, 158–189 (2010). (PMID: 2006463710.1016/j.cogpsych.2009.12.001)
Dickey, J. M. The weighted likelihood ratio, linear hypotheses on normal location parameters. Ann. Math. Stat. 42, 204–223 (1971). (PMID: 10.1214/aoms/1177693507)
Good, I. J. Weight of evidence: a brief survey. Bayesian Stat. 2, 249–270 (1985).
Mulder, J. & Pericchi, L. R. The Matrix-F prior for estimating and testing covariance matrices. Bayesian Anal. 13, 1193–1214 (2018). (PMID: 10.1214/17-BA1092)
Isvoranu, A.-M. & Epskamp, S. Which estimation method to choose in network psychometrics? Deriving guidelines for applied researchers. Psychol. Methods 28, 925–946 (2023). (PMID: 3484327710.1037/met0000439)
Further information
Psychometric network models have become increasingly popular in psychology and the social sciences as tools to explore multivariate data. In these models, constructs are represented as networks of observed variables, and researchers often interpret the presence or absence of edges as evidence for or against conditional associations between variables. However, the statistical evidence supporting these edges is rarely evaluated. Here we show that a large proportion of reported network findings is based on weak or inconclusive evidence. We reanalysed 293 networks from 126 published papers using a Bayesian approach that quantifies the evidence for each edge. Across the studies, one-third of edges showed inconclusive evidence (1/3 < inclusion Bayes factor (BF <subscript>10</subscript> ) < 3), about half showed weak evidence (BF <subscript>10</subscript> > 3 or BF <subscript>10</subscript> < 1/3) and fewer than 20% were strongly supported (BF <subscript>10</subscript> > 10 or BF <subscript>10</subscript> < 1/10). Networks based on relatively large sample sizes yielded more-robust results. Our study shows that networks are often supported by too little evidence from the data for the results to be reported with confidence, not meaning that the results are flawed but, rather, suggesting caution in interpreting individual edges.
(© 2025. The Author(s), under exclusive licence to Springer Nature Limited.)
Competing interests: The authors declare no competing interests.