Treffer: Regulatory Adoption of AI, ML, Computational Modeling & Simulation in In-Silico Clinical Trials for Medical Devices: A Systematic Review.

Title:
Regulatory Adoption of AI, ML, Computational Modeling & Simulation in In-Silico Clinical Trials for Medical Devices: A Systematic Review.
Authors:
De A; Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India., Lohani A; Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India. alkalohani06@gmail.com.
Source:
Therapeutic innovation & regulatory science [Ther Innov Regul Sci] 2026 Jan; Vol. 60 (1), pp. 45-62. Date of Electronic Publication: 2025 Oct 07.
Publication Type:
Journal Article; Systematic Review
Language:
English
Journal Info:
Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 101597411 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2168-4804 (Electronic) Linking ISSN: 21684790 NLM ISO Abbreviation: Ther Innov Regul Sci Subsets: MEDLINE
Imprint Name(s):
Publication: 2020- : Cham, Switzerland : Springer International Publishing
Original Publication: Thousand Oaks, CA : Sage Publications, [2013]-
References:
Medical Devices Market Share, Trends | Global Growth [2032]. Accessed: Apr. 02, 2025. Available from: https://www.fortunebusinessinsights.com/industry-reports/medical-devices-market-100085.
Sertkaya A, DeVries R, Jessup A, Beleche T. Estimated cost of developing a therapeutic complex medical device in the US. JAMA Netw Open. 2022;5(9):e2231609. https://doi.org/10.1001/jamanetworkopen.2022.31609 . (PMID: 10.1001/jamanetworkopen.2022.31609361031789475382)
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71 . (PMID: 10.1136/bmj.n71337820578005924)
Pappalardo F, Russo G, Tshinanu FM, Viceconti M. In silico clinical trials: concepts and early adoptions. Brief Bioinform. 2019;20(5):1699–708. https://doi.org/10.1093/bib/bby043 . (PMID: 10.1093/bib/bby04329868882)
Scuoppo R, Catalano C, Crascì F, Pasta S. Credibility assessment of the patient-specific modeling of the aneurysmal ascending thoracic aorta: verification, validation and uncertainty quantification. Cardiovasc Eng Tech (2025). https://doi.org/10.1007/s13239-025-00801-1. (PMID: 10.1007/s13239-025-00801-1)
Mehmood K, Arshad M, Lazoglu I, Küçükaksu DS, Bakuy V. In-silico hemodynamic ramp testing of ventricular assist device implanted patients using acausal cardiovascular-VAD modeling. Artif Organs. 2023;47(9):1452–63. https://doi.org/10.1111/aor.14597 . (PMID: 10.1111/aor.1459737306082)
Abadi E, Barufaldi B, Lago M, et al. Toward widespread use of virtual trials in medical imaging innovation and regulatory science. Med Phys. 2024;51(12):9394–404. https://doi.org/10.1002/mp.17442 . (PMID: 10.1002/mp.1744239369717)
Viceconti M, Juárez MA, Curreli C, Pennisi M, Russo G, Pappalardo F. Credibility of in silico trial technologies—a theoretical framing. IEEE J Biomed Health Inform. 2020;24(1):4–13. https://doi.org/10.1109/JBHI.2019.2949888 . (PMID: 10.1109/JBHI.2019.294988831670687)
Roesler D, Czypionka T, Eisenberg S, Kraus M, Reiss M, Zech C. Impact of in-silico technologies in the development of high-risk medical devices on healthcare. Eur J Public Health. 2024;34:44.1210. https://doi.org/10.1093/eurpub/ckae144.1210 . (PMID: 10.1093/eurpub/ckae144.1210)
Simalatsar A. Synthetic biomedical data generation in support of In silico clinical trials. Front Big Data. 2023. https://doi.org/10.3389/fdata.2023.1085571 . (PMID: 10.3389/fdata.2023.10855713765511310466133)
Jiang Z, Abbas H, Jang KJ, et al. In-silico pre-clinical trials for implantable cardioverter defibrillators. In: 2016 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2016. pp. 169–172. https://doi.org/10.1109/EMBC.2016.7590667 .
Viceconti M, Cobelli C, Haddad T, Himes A, Kovatchev B, Palmer M. In silico assessment of biomedical products: the conundrum of rare but not so rare events in two case studies. Proc Inst Mech Eng [H]. 2017;231(5):455–66. https://doi.org/10.1177/0954411917702931 . (PMID: 10.1177/0954411917702931)
Faris O, Shuren J. An FDA viewpoint on unique considerations for medical-device clinical trials. New Engl J Med. 2017;376(14):1350–7. https://doi.org/10.1056/NEJMra1512592 . (PMID: 10.1056/NEJMra151259228379790)
Mirinejad H, Parvinian B, Ricks M, et al. Evaluation of fluid resuscitation control algorithms via a hardware-in-the-loop test bed. IEEE Trans Biomed Eng. 2020;67(2):471–81. https://doi.org/10.1109/TBME.2019.2915526 . (PMID: 10.1109/TBME.2019.291552631071014)
Badano A, Badal A, Glick S, Graff CG, Samuelson F, Sharma D, et al. In silico imaging clinical trials for regulatory evaluation: initial considerations for VICTRE, a demonstration study. In: Medical Imaging 2017: Physics of Medical Imaging. SPIE; 2017. pp. 494–9. https://doi.org/10.1117/12.2255746 .
Eppich WJ, Gormley GJ, Teunissen PW. In-depth interviews. In: Nestel D, Hui J, Kunkler K, Scerbo MW, Calhoun AW, editors. Healthcare Simulation research: a practical guide. New York: Springer International Publishing; 2019. p. 85–91. (PMID: 10.1007/978-3-030-26837-4_12)
Calder M, Craig C, Culley D, et al. Computational modelling for decision-making: where, why, what, who and how. R Soc Open Sci. 2018;5(6):172096. https://doi.org/10.1098/rsos.172096 . (PMID: 10.1098/rsos.172096301104426030334)
Leclère T, Johannesen PT, Wijetillake A, Segovia-Martínez M, Lopez-Poveda EA. A computational modelling framework for assessing information transmission with cochlear implants. Hear Res. 2023;432:108744. https://doi.org/10.1016/j.heares.2023.108744 . (PMID: 10.1016/j.heares.2023.10874437004271)
Magomedov IA, Khaliev MSU, Elmurzaev AA. Application of finite element analysis in medicine. J Phys: Conf Ser. 2020;1679(2):022057. https://doi.org/10.1088/1742-6596/1679/2/022057 . (PMID: 10.1088/1742-6596/1679/2/022057)
Taylor M, Prendergast PJ. Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J Biomech. 2015;48(5):767–78. https://doi.org/10.1016/j.jbiomech.2014.12.019 . (PMID: 10.1016/j.jbiomech.2014.12.01925560273)
Wang M, Yang N. Three-dimensional computational model simulating the fracture healing process with both biphasic poroelastic finite element analysis and fuzzy logic control. Sci Rep. 2018;8(1):6744. https://doi.org/10.1038/s41598-018-25229-7 . (PMID: 10.1038/s41598-018-25229-7297129795928059)
Kladovasilakis N, Tsongas K, Tzetzis D. Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures. Biomimetics. 2020;5(3):44. https://doi.org/10.3390/biomimetics5030044 . (PMID: 10.3390/biomimetics5030044329325967557818)
Dommeti VK, Pramanik S, Roy S. Design of customized coated dental implants using finite element analysis. Dent Med Probl. 2023;60(3):385–92. https://doi.org/10.17219/dmp/142447 . (PMID: 10.17219/dmp/14244736916857)
Bhatti MM, Marin M, Zeeshan A, Abdelsalam SI. Editorial: Recent trends in computational fluid dynamics. Front Phys. 2020. https://doi.org/10.3389/fphy.2020.593111 . (PMID: 10.3389/fphy.2020.593111)
Reid L. An introduction to biomedical computational fluid dynamics. In: Rea PM, editor. Biomedical visualisation, vol. 10. Cham: Springer International Publishing; 2021. p. 205–22. https://doi.org/10.1007/978-3-030-76951-2_10 . (PMID: 10.1007/978-3-030-76951-2_10)
Sarrami-Foroushani A, Lassila T, MacRaild M, et al. In-silico trial of intracranial flow diverters replicates and expands insights from conventional clinical trials. Nat Commun. 2021;12(1):3861. https://doi.org/10.1038/s41467-021-23998-w . (PMID: 10.1038/s41467-021-23998-w341628528222326)
Fink JB, Molloy L, Patton JS, Galindo-Filho VC, de Melo Barcelar J, Alcoforado L, et al. Good things in small packages: an innovative delivery approach for inhaled insulin. Pharm Res. 2017;34(12):2568–78. https://doi.org/10.1007/s11095-017-2215-2 . (PMID: 10.1007/s11095-017-2215-228718049)
Macal C, North M. Introductory tutorial: agent-based modeling and simulation. In: Proceedings of the winter simulation conference 2014. 2014. pp. 6–20. https://doi.org/10.1109/WSC.2014.7019874 .
Bonabeau E. Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci U S A. 2002;99(suppl_3):7280–7. https://doi.org/10.1073/pnas.082080899 . (PMID: 10.1073/pnas.08208089912011407128598)
Macal CM. Everything you need to know about agent-based modelling and simulation. J Simul. 2016;10(2):144–56. https://doi.org/10.1057/jos.2016.7 . (PMID: 10.1057/jos.2016.7)
Tracy M, Cerdá M, Keyes KM. Agent-based modeling in public health: current applications and future directions. Annu Rev Public Health. 2018;39(1):77–94. https://doi.org/10.1146/annurev-publhealth-040617-014317. (PMID: 10.1146/annurev-publhealth-040617-014317293288705937544)
Sulis E, Mariani S, Montagna S. A survey on agents applications in healthcare: opportunities, challenges and trends. Comput Methods Programs Biomed. 2023;236:107525. https://doi.org/10.1016/j.cmpb.2023.107525 . (PMID: 10.1016/j.cmpb.2023.10752537084529)
Castiglione F. Agent-based modeling and simulation, introduction to. In: Sotomayor M, Pérez-Castrillo D, Castiglione F, editors. Complex social and behavioral systems : game theory and agent-based models. New York: Springer, US; 2020. p. 661–5. https://doi.org/10.1007/978-1-0716-0368-0_13 . (PMID: 10.1007/978-1-0716-0368-0_13)
Colasanti R, MacLachlan A, Silverman E, et al. Using agent-based models to address non-communicable diseases: a review of models and their application to policy. Lancet. 2022;400:S33. https://doi.org/10.1016/S0140-6736(22)02243-7 . (PMID: 10.1016/S0140-6736(22)02243-7)
Li S, Lei L, Hu Y, Zhang Y, Zhao S, Zhang J. A fully coupled framework for in silico investigation of in-stent restenosis. Comput Methods Biomech Biomed Eng. 2019;22(2):217–28. https://doi.org/10.1080/10255842.2018.1545017 . (PMID: 10.1080/10255842.2018.1545017)
Corti A, McQueen A, Migliavacca F, Chiastra C, McGinty S. Investigating the effect of drug release on in-stent restenosis: a hybrid continuum—agent-based modelling approach. Comput Methods Programs Biomed. 2023;241:107739. https://doi.org/10.1016/j.cmpb.2023.107739 . (PMID: 10.1016/j.cmpb.2023.10773937591163)
Wiederhold G, McCarthy J. Arthur Samuel: pioneer in machine learning. IBM J Res Dev. 1992;36(3):329–31. https://doi.org/10.1147/rd.363.0329 . (PMID: 10.1147/rd.363.0329)
Bhardwaj R, Nambiar AR, Dutta D. A study of machine learning in healthcare. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2017. Vol 2, pp. 236–241. https://doi.org/10.1109/COMPSAC.2017.164 .
Dai X, Spasić I, Meyer B, Chapman S, Andres F. Machine Learning on mobile: an on-device inference app for skin cancer detection. In: 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC); 2019. pp. 301–305. https://doi.org/10.1109/FMEC.2019.8795362 .
Miller MI, Shih LC, Kolachalama VB. Machine learning in clinical trials: a primer with applications to neurology. Neurotherapeutics. 2023;20(4):1066–80. https://doi.org/10.1007/s13311-023-01384-2 . (PMID: 10.1007/s13311-023-01384-23724983610228463)
Caixinha M, Nunes S. Machine learning techniques in clinical vision sciences. Curr Eye Res. 2017;42(1):1–15. https://doi.org/10.1080/02713683.2016.1175019 . (PMID: 10.1080/02713683.2016.117501927362387)
Cafri G, Graves SE, Sedrakyan A, et al. Postmarket surveillance of arthroplasty device components using machine learning methods. Pharmacoepidemiol Drug Saf. 2019;28(11):1440–7. https://doi.org/10.1002/pds.4882 . (PMID: 10.1002/pds.488231418506)
Mahesh B. Machine learning algorithms—a review. IJSR. 2020;9(1):381–6. https://doi.org/10.21275/ART20203995 . (PMID: 10.21275/ART20203995)
Kovačević Ž, Gurbeta Pokvić L, Spahić L, Badnjević A. Prediction of medical device performance using machine learning techniques: infant incubator case study. Health Technol. 2020;10(1):151–5. https://doi.org/10.1007/s12553-019-00386-5 . (PMID: 10.1007/s12553-019-00386-5)
Spahić L, Kurta E, Ćordić S, et al. Machine learning techniques for performance prediction of medical devices: infant incubators. In: Badnjevic A, Škrbić R, Gurbeta Pokvić L, editors., et al., CMBEBIH 2019. New York: Springer International Publishing; 2020. p. 483–90. https://doi.org/10.1007/978-3-030-17971-7_72 . (PMID: 10.1007/978-3-030-17971-7_72)
Zdravevski E, Risteska Stojkoska B, Standl M, Schulz H. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions. PLoS ONE. 2017;12(9):e0184216. https://doi.org/10.1371/journal.pone.0184216 . (PMID: 10.1371/journal.pone.0184216288809235589162)
Scuoppo R, Castelbuono S, Cannata S, et al. Generation of a virtual cohort of TAVI patients for in silico trials: a statistical shape and machine learning analysis. Med Biol Eng Comput. 2025;63(2):467–82. https://doi.org/10.1007/s11517-024-03215-8 . (PMID: 10.1007/s11517-024-03215-839388030)
Wang Z, Gao C, Glass LM, Sun J. Artificial intelligence for in silico clinical trials: a review. Published online September 16, 2022. https://doi.org/10.48550/arXiv.2209.09023.
Roesler D, Czypionka T, Eisenberg S, Kraus M, Reiss M, Zech C. Impact of in-silico technologies in the development of high-risk medical devices on healthcare. Eur J Public Health. 2024;34(Supplement_3):ckae144.1210. https://doi.org/10.1093/eurpub/ckae144.1210 . (PMID: 10.1093/eurpub/ckae144.121011516831)
Vidovszky AA, Fisher CK, Loukianov AD, et al. Increasing acceptance of AI-generated digital twins through clinical trial applications. Clin Transl Sci. 2024;17(7):e13897. https://doi.org/10.1111/cts.13897 . (PMID: 10.1111/cts.138973903970411263130)
Badano A, et al. The stochastic digital human is now enrolling for in silico imaging trials—methods and tools for generating digital cohorts. Prog Biomed Eng. 2023;5(4):042002. https://doi.org/10.1088/2516-1091/ad04c0 . (PMID: 10.1088/2516-1091/ad04c0)
Kovatchev BP, Colmegna P, Pavan J, et al. Human-machine co-adaptation to automated insulin delivery: a randomised clinical trial using digital twin technology. NPJ Digit Med. 2025;8(1):253. https://doi.org/10.1038/s41746-025-01679-y . (PMID: 10.1038/s41746-025-01679-y4032905212055975)
Viceconti M, Pappalardo F, Rodriguez B, Horner M, Bischoff J, Musuamba Tshinanu F. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods. 2021;185:120–7. https://doi.org/10.1016/j.ymeth.2020.01.011 . (PMID: 10.1016/j.ymeth.2020.01.011319911937883933)
C. for D. and R. Health, “Assessing the Credibility of Computational Modeling and Simulation in Medical Device Submissions.” Accessed: Apr. 13, 2025. Available: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/assessing-credibility-computational-modeling-and-simulation-medical-device-submissions.
“Verification, Validation and Uncertainty Quantification (VVUQ)-ASME.” Accessed: Apr. 02, 2025. Available: https://www.asme.org/codes-standards/publications-information/verification-validation-uncertainty.
“vphinst-position-on-fp8-greenpaper-v3_5192443874603.pdf.” Accessed: Apr. 13, 2025. Available: https://www.vph-institute.org/upload/vphinst-position-on-fp8-greenpaper-v3_5192443874603.pdf.
“Avicenna, a strategy for in-silico clinical trials.” Accessed: Apr. 02, 2025. Available: https://www.vph-institute.org/avicenna.html.
“EMA Regulation Vote result-major gains for in silico.” Accessed: Apr. 02, 2025. Available: // www.avicenna-alliance.com/news/ema-regulation-vote-result-major-gains-for-in-silico.html.
Regulatory science strategy | European Medicines Agency (EMA). March 31, 2020. Accessed April 13, 2025. https://www.ema.europa.eu/en/about-us/how-we-work/regulatory-science-strategy.
Regulatory acceptance of 3R (replacement, reduction, refinement) testing approaches-Scientific guideline | European Medicines Agency (EMA). February 24, 2017. Accessed April 13, 2025. https://www.ema.europa.eu/en/regulatory-acceptance-3r-replacement-reduction-refinement-testing-approaches-scientific-guideline.
“Modelling and simulation: questions and answers | European Medicines Agency (EMA).” Accessed: Apr. 02, 2025. Available: https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/clinical-pharmacology-pharmacokinetics/modelling-simulation-questions-answers.
Kijima S, Yoshida S, Ochiai Y. Activity and perspective on quantitative modeling and simulation in Japan: update from the pharmaceuticals and medical devices agency. CPT Pharmacomet Syst Pharmacol. 2022;11(12):1552–5. https://doi.org/10.1002/psp4.12868 . (PMID: 10.1002/psp4.12868)
“Subcommittee on Computer Simulation | Pharmaceuticals and Medical Devices Agency.” Accessed: Apr. 02, 2025. Available: https://www.pmda.go.jp/english/rs-sb-std/sb/subcommittees-4th/00066.html.
“download.pdf.” Accessed: Apr. 02, 2025. Available: https://www.fda.gov/media/167973/download.
Research C for DE and. Considerations for the Use of Artificial Intelligence To Support Regulatory Decision-Making for Drug and Biological Products. January 7, 2025. Accessed April 13, 2025. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological.
“Draft-reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf.” Accessed: Apr. 02, 2025. Available: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf.
“Multi-annual-artificial-intelligence-workplan-2023-2028-hma-ema-joint-big-data-steering-group_en.pdf.” Accessed: Apr. 02, 2025. Available: https://www.ema.europa.eu/en/documents/work-programme/multi-annual-artificial-intelligence-workplan-2023-2028-hma-ema-joint-big-data-steering-group_en.pdf.
“Subcommittee on Software as a Medical Device Utilizing AI and Machine Learning,” Pharmaceuticals and Medical Devices Agency. Accessed: Apr. 02, 2025. Available: https://www.pmda.go.jp/english/rs-sb-std/sb/subcommittees/0023.html.
Crea F. Quality standards for artificial intelligence-based studies and clinical trials. Eur Heart J. 2023;44(46):4815–8. https://doi.org/10.1093/eurheartj/ehad784 . (PMID: 10.1093/eurheartj/ehad78438059791)
Askin S, Burkhalter D, Calado G, El Dakrouni S. Artificial intelligence applied to clinical trials: opportunities and challenges. Health Technol. 2023;13(2):203–13. https://doi.org/10.1007/s12553-023-00738-2 . (PMID: 10.1007/s12553-023-00738-2)
Favre P, Bischoff J. Identifying the patient harms to include in an in silico clinical trial. Comput Methods Programs Biomed. 2023;241:107735. https://doi.org/10.1016/j.cmpb.2023.107735 . (PMID: 10.1016/j.cmpb.2023.10773537544163)
Wang K, Parrott NJ, Lavé T. Embracing the future of medicine with virtual patients. Drug Discov Today. 2025;30(3):104322. https://doi.org/10.1016/j.drudis.2025.104322 . (PMID: 10.1016/j.drudis.2025.10432240032136)
Contributed Indexing:
Keywords: Artificial intelligence; Computer modelling and simulation; EMA; In-silico clinical trials; Medical device; PMDA; USFDA
Entry Date(s):
Date Created: 20251007 Date Completed: 20251230 Latest Revision: 20260112
Update Code:
20260112
DOI:
10.1007/s43441-025-00871-2
PMID:
41055689
Database:
MEDLINE

Weitere Informationen

Objective: This study explores the revolutionary potential of in-silico clinical trials (ISCTs) in medical device development, emphasizing the integration of computational modeling and simulation (CM&S), artificial intelligence (AI), and machine learning (ML). It evaluates regulatory advancements by the FDA, EMA, and PMDA, identifies barriers to global ISCTs adoption, and proposes strategies to enhance credibility, standardization, and ethical alignment.
Methods: A systematic review following PRISMA 2020 guidelines reviewed 72 studies (2014-2025) from Scopus, PubMed, Web of Science, and regulatory reports. Excluding non-regulatory or non-medical device research, inclusion criteria emphasized ISCTs technologies and regulatory frameworks.
Result: ISCTs employ CM&S techniques, including finite element analysis, computational fluid dynamics, and agent-based modeling, to simulate medical device performance and generate synthetic patient cohorts, thereby reducing costs and addressing ethical concerns. AI/ML further enhances predictive accuracy and optimizes trial design. Regulatory agencies have developed advanced frameworks like the FDA's model credibility and AI guidelines, the EMA promotes its 3R Guidelines, and the PMDA supports computational validation through dedicated subcommittees. Key challenges include regulatory fragmentation, limited data accessibility, computational complexity, and ethical risks such as algorithmic bias. Proposed solutions include global harmonization of regulatory guidelines, explainable AI implementation, federated learning adoption for secure data collaboration, and hybrid trial designs that integrate ISCTs with traditional methodologies.
Conclusion: ISCTs can revolutionize the development and assessment of medical devices. Standardized validation frameworks, regulatory standards, and interdisciplinary cooperation are required to address these issues. Clear guidelines must ensure ISCTs legitimacy and acceptance and promote safer and ethical medical innovations.
(© 2025. The Author(s), under exclusive licence to The Drug Information Association, Inc.)

Declarations. Competing interests: The authors declare no competing interests. Ethics Approval and Consent to Participate: Not applicable, as this study is based on a systematic review of published literature and does not involve human or animal participants. Informed Consent: Not applicable.