Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: The cognitive and motor determinants of the perception of effort.

Title:
The cognitive and motor determinants of the perception of effort.
Authors:
Herzberg E; Department of Physical Therapy, The Stanley Steyer School of Health Professions, Gray Faculty of Medical & Health Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.; Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel., Halperin I; Department of Health Promotion, School of Public Health, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.; Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel., Wolpe N; Department of Physical Therapy, The Stanley Steyer School of Health Professions, Gray Faculty of Medical & Health Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel. nwolpe@tau.ac.il.; Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel. nwolpe@tau.ac.il.
Source:
Cognitive, affective & behavioral neuroscience [Cogn Affect Behav Neurosci] 2025 Oct 01. Date of Electronic Publication: 2025 Oct 01.
Publication Model:
Ahead of Print
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Springer Country of Publication: United States NLM ID: 101083946 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1531-135X (Electronic) Linking ISSN: 15307026 NLM ISO Abbreviation: Cogn Affect Behav Neurosci Subsets: MEDLINE
Imprint Name(s):
Publication: 2011- : New York : Springer
Original Publication: Austin, TX : Psychonomic Society, c2001-
References:
Ang, Y.-S., Gelda, S. E., & Pizzagalli, D. A. (2023). Cognitive effort-based decision-making in major depressive disorder. Psychological Medicine, 53(9), 4228–4235. https://doi.org/10.1017/S0033291722000964. (PMID: 10.1017/S003329172200096435466895)
Avery, J. A., Drevets, W. C., Moseman, S. E., Bodurka, J., Barcalow, J. C., & Simmons, W. K. (2014). Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biological Psychiatry, 76(3), 258–266. https://doi.org/10.1016/j.biopsych.2013.11.027. (PMID: 10.1016/j.biopsych.2013.11.02724387823)
Berwian, I. M., Wenzel, J. G., Collins, A. G. E., Seifritz, E., Stephan, K. E., Walter, H., & Huys, Q. J. M. (2020). Computational mechanisms of effort and reward decisions in patients with depression and their association with relapse after antidepressant discontinuation. JAMA Psychiatry, 77(5), 513. https://doi.org/10.1001/jamapsychiatry.2019.4971. (PMID: 10.1001/jamapsychiatry.2019.497132074255)
Bonnelle, V., Veromann, K.-R., Heyes, S. B., Sterzo, E. L., Manohar, S., & Husain, M. (2015). Characterization of reward and effort mechanisms in apathy. Journal of Physiology-Paris, 109(1–3), 16–26. (PMID: 10.1016/j.jphysparis.2014.04.00224747776)
Bustamante, L. A., Barch, D. M., Solis, J., Oshinowo, T., Grahek, I., Konova, A. B., ..., Cohen, J. D. (2024). Major depression symptom severity associations with willingness to exert effort and patch foraging strategy. Psychological Medicine, 54(15), 4396–4407. https://doi.org/10.1017/S0033291724002691. (PMID: 10.1017/S003329172400269111650159)
Bustamante, L. A., Oshinowo, T., Lee, J. R., Tong, E., Burton, A. R., Shenhav, A., ..., Daw, N. D. (2023). Effort foraging task reveals positive correlation between individual differences in the cost of cognitive and physical effort in humans. Proceedings of the National Academy of Sciences of the United States of America, 120(50), Article e2221510120. https://doi.org/10.1073/pnas.2221510120. (PMID: 10.1073/pnas.22215101203806450710723129)
Chong, T.T.-J., Apps, M. A. J., Giehl, K., Hall, S., Clifton, C. H., & Husain, M. (2018). Computational modelling reveals distinct patterns of cognitive and physical motivation in elite athletes. Scientific Reports, 8(1), Article 11888. https://doi.org/10.1038/s41598-018-30220-3. (PMID: 10.1038/s41598-018-30220-3300897826082862)
Chong, T.T.-J., Apps, M., Giehl, K., Sillence, A., Grima, L. L., & Husain, M. (2017). Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biology, 15(2), Article e1002598. https://doi.org/10.1371/journal.pbio.1002598. (PMID: 10.1371/journal.pbio.1002598282348925325181)
Chong, T.T.-J., Fortunato, E., & Bellgrove, M. A. (2023). Amphetamines improve the motivation to invest effort in attention-deficit/hyperactivity disorder. Journal of Neuroscience, 43(41), 6898–6908. https://doi.org/10.1523/JNEUROSCI.0982-23.2023. (PMID: 10.1523/JNEUROSCI.0982-23.202337666665)
Cléry-Melin, M.-L., Schmidt, L., Lafargue, G., Baup, N., Fossati, P., & Pessiglione, M. (2011). Why don’t you try harder? An investigation of effort production in major depression. PLoS One, 6(8), Article e23178. https://doi.org/10.1371/journal.pone.0023178. (PMID: 10.1371/journal.pone.0023178218530833154289)
Culbreth, A. J., Chib, V. S., Riaz, S. S., Manohar, S. G., Husain, M., Waltz, J. A., & Gold, J. M. (2024). Increased sensitivity to effort and perception of effort in people with schizophrenia. Schizophrenia Bulletin. https://doi.org/10.1093/schbul/sbae162. (PMID: 10.1093/schbul/sbae1623842993712061651)
Culbreth, A. J., Moran, E. K., & Barch, D. M. (2018). Effort-based decision-making in schizophrenia. Current Opinion in Behavioral Sciences, 22, 1–6. https://doi.org/10.1016/j.cobeha.2017.12.003. (PMID: 10.1016/j.cobeha.2017.12.00329607387)
De Morree, H. M., & Marcora, S. M. (2015). Psychobiology of Perceived Effort During Physical Tasks. In G. H. E. Gendolla, M. Tops, & S. L. Koole (Eds.), Handbook of Biobehavioral Approaches to Self-Regulation (pp. 255–270). Springer New York. https://doi.org/10.1007/978-1-4939-1236-0_17.
Dunne, J., Flores, M., Gawande, R., & Schuman-Olivier, Z. (2021). Losing trust in body sensations: Interoceptive awareness and depression symptom severity among primary care patients. Journal Of Affective Disorders, 282, 1210–1219. https://doi.org/10.1016/j.jad.2020.12.092. (PMID: 10.1016/j.jad.2020.12.09233601698)
Elliott, R., Sahakian, B. J., Herrod, J. J., Robbins, T. W., & Paykel, E. S. (1997). Abnormal response to negative feedback in unipolar depression: Evidence for a diagnosis specific impairment. Journal of Neurology, Neurosurgery & Psychiatry, 63(1), 74–82. https://doi.org/10.1136/jnnp.63.1.74. (PMID: 10.1136/jnnp.63.1.74)
Hägele, C., Schlagenhauf, F., Rapp, M., Sterzer, P., Beck, A., Bermpohl, F., Stoy, M., Ströhle, A., Wittchen, H.-U., Dolan, R. J., & Heinz, A. (2015). Dimensional psychiatry: Reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology, 232(2), 331–341. https://doi.org/10.1007/s00213-014-3662-7. (PMID: 10.1007/s00213-014-3662-724973896)
Halperin, I., & Vigotsky, A. D. (2024). An integrated perspective of effort and perception of effort. Sports Medicine, 54(8), 2019–2032. https://doi.org/10.1007/s40279-024-02055-8. (PMID: 10.1007/s40279-024-02055-838909350)
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ..., Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2. (PMID: 10.1038/s41586-020-2649-2329390667759461)
Harshaw, C. (2015). Interoceptive dysfunction: Toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141(2), 311–363. https://doi.org/10.1037/a0038101. (PMID: 10.1037/a003810125365763)
Hogan, P. S., Galaro, J. K., & Chib, V. S. (2019). Roles of ventromedial prefrontal cortex and anterior cingulate in subjective valuation of prospective effort. Cerebral Cortex, 29(10), 4277–4290. https://doi.org/10.1093/cercor/bhy310. (PMID: 10.1093/cercor/bhy31030541111)
Hu, E. J., Casamento-Moran, A., Galaro, J. K., Chan, K. L., Edden, R. A. E., Puts, N. A. J., & Chib, V. S. (2022). Sensorimotor cortex GABA moderates the relationship between physical exertion and assessments of effort. The Journal of Neuroscience, 42(31), 6121–6130. https://doi.org/10.1523/JNEUROSCI.2255-21.2022. (PMID: 10.1523/JNEUROSCI.2255-21.2022357643809351634)
Husain, M., & Roiser, J. P. (2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Reviews Neuroscience, 19(8), 470–484. https://doi.org/10.1038/s41583-018-0029-9. (PMID: 10.1038/s41583-018-0029-929946157)
Jurgelis, M., Chong, W. B., Atkins, K. J., Cooper, P. S., Coxon, J. P., & Chong, T.T.-J. (2021). Heightened effort discounting is a common feature of both apathy and fatigue. Scientific Reports. https://doi.org/10.1038/s41598-021-01287-2. (PMID: 10.1038/s41598-021-01287-2347826308593117)
Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9. Journal of General Internal Medicine, 16(9), 606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x. (PMID: 10.1046/j.1525-1497.2001.016009606.x115569411495268)
Kurniawan, I. T., Guitart-Masip, M., Dayan, P., & Dolan, R. J. (2013). Effort and valuation in the brain: The effects of anticipation and execution. The Journal of Neuroscience, 33(14), 6160–6169. https://doi.org/10.1523/JNEUROSCI.4777-12.2013. (PMID: 10.1523/JNEUROSCI.4777-12.2013235544973639311)
Kurniawan, I. T., Seymour, B., Talmi, D., Yoshida, W., Chater, N., & Dolan, R. J. (2010). Choosing to make an effort: The role of striatum in signaling physical effort of a chosen action. Journal of Neurophysiology, 104(1), 313–321. https://doi.org/10.1152/jn.00027.2010. (PMID: 10.1152/jn.00027.2010204632042904211)
Le Heron, C., Plant, O., Manohar, S., Ang, Y.-S., Jackson, M., Lennox, G., Hu, M. T., & Husain, M. (2018). Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease. Brain, 141(5), 1455–1469. https://doi.org/10.1093/brain/awy110. (PMID: 10.1093/brain/awy110296726685917786)
Lopez-Gamundi, P., Yao, Y.-W., Chong, T.T.-J., Heekeren, H. R., Mas-Herrero, E., & Marco-Pallarés, J. (2021). The neural basis of effort valuation: A meta-analysis of functional magnetic resonance imaging studies. Neuroscience and Biobehavioral RevieWs, 131, 1275–1287. https://doi.org/10.1016/j.neubiorev.2021.10.024. (PMID: 10.1016/j.neubiorev.2021.10.02434710515)
Maddox, W. T., Gorlick, M. A., Worthy, D. A., & Beevers, C. G. (2012). Depressive symptoms enhance loss-minimization, but attenuate gain-maximization in history-dependent decision-making. Cognition, 125(1), 118–124. https://doi.org/10.1016/j.cognition.2012.06.011. (PMID: 10.1016/j.cognition.2012.06.011228010543426306)
Manohar, S. G., Chong, T.T.-J., Apps, M. A. J., Batla, A., Stamelou, M., ..., Husain, M. (2015). Reward pays the cost of noise reduction in motor and cognitive control. Current Biology, 25(13), 1707–1716. https://doi.org/10.1016/j.cub.2015.05.038. (PMID: 10.1016/j.cub.2015.05.038260969754557747)
Marin, R. S., Biedrzycki, R. C., & Firinciogullari, S. (1991). Reliability and validity of the apathy evaluation scale. Psychiatry Research, 38(2), 143–162. https://doi.org/10.1016/0165-1781(91)90040-V. (PMID: 10.1016/0165-1781(91)90040-V1754629)
Müller, T., Klein-Flügge, M. C., Manohar, S. G., Husain, M., & Apps, M. A. J. (2021). Neural and computational mechanisms of momentary fatigue and persistence in effort-based choice. Nature Communications, 12(1), 1. https://doi.org/10.1038/s41467-021-24927-7. (PMID: 10.1038/s41467-021-24927-7)
Norbury, A., Hauser, T. U., Fleming, S. M., Dolan, R. J., & Huys, Q. J. M. (2024). Different components of cognitive-behavioral therapy affect specific cognitive mechanisms. Science Advances, 10(13), Article eadk3222. https://doi.org/10.1126/sciadv.adk3222. (PMID: 10.1126/sciadv.adk32223853692410971416)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.
Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y. (PMID: 10.3758/s13428-018-01193-y307342066420413)
R Core Team. (2016). R: a language and environment for statistical computing. [Computer software]. Vienna: R Foundation for Statistical Computing. https://www.R-project.org.
Rottenberg, J., Gross, J. J., & Gotlib, I. H. (2005). Emotion context insensitivity in major depressive disorder. Journal of Abnormal Psychology, 114(4), 627–639. https://doi.org/10.1037/0021-843X.114.4.627. (PMID: 10.1037/0021-843X.114.4.62716351385)
Ruggiero, V., Dell’Acqua, C., Cremonese, E., Giraldo, M., & Patron, E. (2025). Under the surface: Low cardiac vagal tone and poor interoception in young adults with subclinical depressive symptoms. Journal Of Affective Disorders, 375, 1–9. https://doi.org/10.1016/j.jad.2025.01.057. (PMID: 10.1016/j.jad.2025.01.05739826615)
Salamone, J. D., Yohn, S. E., López-Cruz, L., San Miguel, N., & Correa, M. (2016). Activational and effort-related aspects of motivation: Neural mechanisms and implications for psychopathology. Brain, 139(5), 1325–1347. https://doi.org/10.1093/brain/aww050. (PMID: 10.1093/brain/aww050271895815839596)
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. (PMID: 10.1214/aos/1176344136)
Smith, R., Feinstein, J. S., Kuplicki, R., Forthman, K. L., Stewart, J. L., Paulus, M. P., ..., Khalsa, S. S. (2021). Perceptual insensitivity to the modulation of interoceptive signals in depression, anxiety, and substance use disorders. Scientific Reports, 11(1), Article 2108. https://doi.org/10.1038/s41598-021-81307-3. (PMID: 10.1038/s41598-021-81307-3334835277822872)
The pandas development team. (2024). Pandas-dev/pandas: Pandas (v2.2.2). Zenodo. [Computer software]. 10.5281/zenodo.10957263.
Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012). Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. Journal of Abnormal Psychology, 121(3), 553–558. https://doi.org/10.1037/a0028813. (PMID: 10.1037/a0028813227755833730492)
Treadway, M. T., Buckholtz, J. W., Schwartzman, A. N., Lambert, W. E., & Zald, D. H. (2009). Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One, 4(8), e6598. https://doi.org/10.1371/journal.pone.0006598. (PMID: 10.1371/journal.pone.0006598196723102720457)
Valton, V., Mkrtchian, A., Moses-Payne, M., Gray, A., Kieslich, K., VanUrk, S., ..., Roiser, J. P. (2024). A computational approach to understanding effort-based decision-making in depression. https://doi.org/10.1101/2024.06.17.599286.
Vinckier, F., Jaffre, C., Gauthier, C., Smajda, S., Abdel-Ahad, P., Le Bouc, R., Daunizeau, J., Fefeu, M., Borderies, N., Plaze, M., Gaillard, R., & Pessiglione, M. (2022). Elevated effort cost identified by computational modeling as a distinctive feature explaining multiple behaviors in patients with depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(11), 1158–1169. https://doi.org/10.1016/j.bpsc.2022.07.011. (PMID: 10.1016/j.bpsc.2022.07.01135952972)
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2. (PMID: 10.1038/s41592-019-0686-2320155437056644)
Weilharter, F., Rewitz, K., Halperin, I., & Wolff, W. (2024). The relationship between prescribed ratings of perceived exertion and force production in repeated isometric contractions. Psychology of Sport and Exercise, 73, Article 102657. https://doi.org/10.1016/j.psychsport.2024.102657. (PMID: 10.1016/j.psychsport.2024.10265738719021)
Wickham, H. (with Sievert, C.). (2016). ggplot2: Elegant graphics for data analysis (Second edition). Springer international publishing.
Wolpe, N., Aymerich, C., Jin, Y., Martin-Subero, M., Fuentes-Perez, P., Ovejas-Catalan, C., ..., Fernandez-Egea, E. (2025). Characterising Negative Symptoms in Schizophrenia: CHANSS study protocol (p. 2025.05.30.25328412). medRxiv. https://doi.org/10.1101/2025.05.30.25328412.
Wolpe, N., Holton, R., & Fletcher, P. C. (2024). What is mental effort: A clinical perspective. Biological Psychiatry, 95(11), 1030–1037. https://doi.org/10.1016/j.biopsych.2024.01.022. (PMID: 10.1016/j.biopsych.2024.01.02238309319)
Xiao, B., & Wolpe, N. (2025). The value of progress feedback in physical effort-based decision making. Motivation Science. https://doi.org/10.1037/mot0000411. (PMID: 10.1037/mot0000411)
Grant Information:
1603/22 Israel Science Foundation
Contributed Indexing:
Keywords: Depressive symptoms; Effort; Motivation; Perception of effort
Entry Date(s):
Date Created: 20251001 Latest Revision: 20251001
Update Code:
20251002
DOI:
10.3758/s13415-025-01346-5
PMID:
41034685
Database:
MEDLINE

Weitere Informationen

Effort refers to the physical work or force exerted to achieve an outcome, which is dissociable from the subjective experience that accompanies this exertion, termed perceived effort. Previous decision-making studies have examined effort valuation, focussing on individual differences in effort and reward sensitivity when choosing an action. These studies measure anticipatory aspects effort and reward, rather than their experiential aspects. Yet, how individuals perceive effort has significant implications for mental health. Here, we address this gap using an effort psychophysics task in young, healthy adults (n = 76). Participants used a hand dynamometer to raise a visual "mercury" column to a target zone, aiming to match the required force for at least 3 s within a 7-s window to succeed. After each trial, participants rated their perceived effort on a 0-100 visual analogue scale. We estimated the contribution of force and task failure to perceived effort ratings using a robust regression model. Higher depressive symptoms were associated with a reduced influence of exerted force and an increased influence of task outcome (failure) on perceived effort. We identified additional key cognitive and motor contributors to the experience of effort, such as accumulated fatigue, expectations and force stability. The experience of effort thus arises from multiple interacting cognitive and motor contributors. Individual differences in the contribution of these factors to the experience of effort, such as force and failure are associated with depressive symptoms, underscoring the importance of considering experiential aspects of effort in mental health research.
(© 2025. The Author(s).)

Declarations. Conflicts of interest/competing interests: The authors declare none. Ethics approval: The study was approved by the Tel Aviv University Research Ethics Committee (reference 0005906). Consent to participate: All participants signed written informed consent before starting the experiment. Consent for publication: All authors have read and approved the final version of the manuscript to be submitted for publication. Open Practices Statement: Data and the code used to analyse the data and create the figures are available at: https://github.com/nwolpe/effort_perception .