Treffer: From uncontrolled to controllable: A novel approach for nucleotide-binding, leucine-rich repeat bioengineering.
Title:
From uncontrolled to controllable: A novel approach for nucleotide-binding, leucine-rich repeat bioengineering.
Authors:
Li Y; State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China., Ma C; State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China., Wang X; State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China., Zhong C; State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China., Dinesh-Kumar SP; Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, 95616, CA, USA., Zhang Y; State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Source:
Journal of integrative plant biology [J Integr Plant Biol] 2025 Dec; Vol. 67 (12), pp. 3059-3061. Date of Electronic Publication: 2025 Oct 01.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Wiley-Blackwell Pub Country of Publication: China (Republic : 1949- ) NLM ID: 101250502 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-7909 (Electronic) Linking ISSN: 16729072 NLM ISO Abbreviation: J Integr Plant Biol Subsets: MEDLINE
Imprint Name(s):
Publication: [China] : Wiley-Blackwell Pub
Original Publication: [Carlton South, Victoria] : Blackwell Pub., 2005-
Original Publication: [Carlton South, Victoria] : Blackwell Pub., 2005-
MeSH Terms:
References:
Du, X., Alam, M., Witek, K., Milnes, L., Houghton, J., Lin, X., Ahn, H.‐K., Zhang, Y., Cui, F., Sun, W., et al. (2025). Interfamily co‐transfer of sensor and helper NLRs extends immune receptor functionality between angiosperms. Cell 188: 4505–4516.e4514.
Kim, S.H., Qi, D., Ashfield, T., Helm, M., and Innes, R.W. (2016). Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351: 684–687.
Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A., and Kamoun, S. (2023). NLR immune receptor‐nanobody fusions confer plant disease resistance. Science 379: 934–939.
Tamborski, J., Seong, K., Liu, F., Staskawicz, B.J., and Krasileva, K.seniaV. (2023). Altering specificity and autoactivity of plant immune receptors Sr33 and Sr50 via a rational engineering approach. Mol. Plant Microbe Interact. 36: 434–446.
Wang, J., Chen, T., Zhang, Z., Song, M., Shen, T., Wang, X., Zheng, X., Wang, Y., Song, K., Ge, X., et al. (2025a). Remodelling autoactive NLRs for broad‐spectrum immunity in plants. Nature 645: 737–745.
Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.‐W., Zhou, J.‐M., and Chai, J. (2019). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364: eaav5870.
Wang, J., Shen, T., Song, M., Fan, J., Li, Y., Chin, T.Z., Yu, Y., Huang, F., Yang, X., Li, C., et al. (2025b). Engineering resistance genes against tomato brown rugose fruit virus. Sci. China: Life Sci. https://doi.org/10.1007/s11427-025-3026-7.
Zdrzalek, R., Xi, Y., Langner, T., Bentham, A.R., Petit‐Houdenot, Y., De la Concepcion, J.C., Harant, A., Shimizu, M., Were, V., Talbot, N.J., et al. (2024). Bioengineering a plant NLR immune receptor with a robust binding interface toward a conserved fungal pathogen effector. Proc. Natl. Acad. Sci. U.S.A. 121: e2402872121.
Zhang, X., Liu, Y., Yuan, G., Wang, S., Wang, D., Zhu, T., Wu, X., Ma, M., Guo, L., Guo, H., et al. (2024). The synthetic NLR RGA5(HMA5) requires multiple interfaces within and outside the integrated domain for effector recognition. Nat. Commun. 15: 1104.
Kim, S.H., Qi, D., Ashfield, T., Helm, M., and Innes, R.W. (2016). Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351: 684–687.
Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A., and Kamoun, S. (2023). NLR immune receptor‐nanobody fusions confer plant disease resistance. Science 379: 934–939.
Tamborski, J., Seong, K., Liu, F., Staskawicz, B.J., and Krasileva, K.seniaV. (2023). Altering specificity and autoactivity of plant immune receptors Sr33 and Sr50 via a rational engineering approach. Mol. Plant Microbe Interact. 36: 434–446.
Wang, J., Chen, T., Zhang, Z., Song, M., Shen, T., Wang, X., Zheng, X., Wang, Y., Song, K., Ge, X., et al. (2025a). Remodelling autoactive NLRs for broad‐spectrum immunity in plants. Nature 645: 737–745.
Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.‐W., Zhou, J.‐M., and Chai, J. (2019). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364: eaav5870.
Wang, J., Shen, T., Song, M., Fan, J., Li, Y., Chin, T.Z., Yu, Y., Huang, F., Yang, X., Li, C., et al. (2025b). Engineering resistance genes against tomato brown rugose fruit virus. Sci. China: Life Sci. https://doi.org/10.1007/s11427-025-3026-7.
Zdrzalek, R., Xi, Y., Langner, T., Bentham, A.R., Petit‐Houdenot, Y., De la Concepcion, J.C., Harant, A., Shimizu, M., Were, V., Talbot, N.J., et al. (2024). Bioengineering a plant NLR immune receptor with a robust binding interface toward a conserved fungal pathogen effector. Proc. Natl. Acad. Sci. U.S.A. 121: e2402872121.
Zhang, X., Liu, Y., Yuan, G., Wang, S., Wang, D., Zhu, T., Wu, X., Ma, M., Guo, L., Guo, H., et al. (2024). The synthetic NLR RGA5(HMA5) requires multiple interfaces within and outside the integrated domain for effector recognition. Nat. Commun. 15: 1104.
Grant Information:
32320103003 National Natural Science Foundation of China; 2025TC023 Chinese Universities Scientific Fund; PC2023B02012 Pinduoduo-China Agricultural University Research Fund; 2115 Talent Development Program of China Agricultural University
Substance Nomenclature:
0 (Nucleotides)
0 (NLR Proteins)
0 (Plant Proteins)
0 (NLR Proteins)
0 (Plant Proteins)
Entry Date(s):
Date Created: 20251001 Date Completed: 20251205 Latest Revision: 20251205
Update Code:
20251205
DOI:
10.1111/jipb.70046
PMID:
41031724
Database:
MEDLINE
Weitere Informationen
Gene scarcity and resistance breakdown limit the utility of plant NLRs. Findings in Nature by Wang et al. (2025) describe a bioengineering strategy using N-terminal blocking peptides to achieve tunable NLR activation, providing durable, broad-spectrum resistance to potyviruses in plants.
(© 2025 Institute of Botany, Chinese Academy of Sciences.)