Treffer: Molecular dynamics simulations of proteins: an in-depth review of computational strategies, structural insights, and their role in medicinal chemistry and drug development.

Title:
Molecular dynamics simulations of proteins: an in-depth review of computational strategies, structural insights, and their role in medicinal chemistry and drug development.
Authors:
Farhadi B; EIT Data Science and Communication College, Zhejiang Yuexiu University, Shaoxing, China. 20242705@zyufl.edu.cn., Beygisangchin M; Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. m.beygi2300@gmail.com.; Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. m.beygi2300@gmail.com., Ghamari N; Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, I.R. of Iran., Jakmunee J; Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.; Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand., Tang T; EIT Data Science and Communication College, Zhejiang Yuexiu University, Shaoxing, China.
Source:
Biological cybernetics [Biol Cybern] 2025 Sep 26; Vol. 119 (4-6), pp. 28. Date of Electronic Publication: 2025 Sep 26.
Publication Type:
Journal Article; Review
Language:
English
Journal Info:
Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7502533 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0770 (Electronic) Linking ISSN: 03401200 NLM ISO Abbreviation: Biol Cybern Subsets: MEDLINE
Imprint Name(s):
Publication: Berlin : Springer Verlag
Original Publication: Berlin, New York, Springer-Verlag.
References:
Agu PC et al (2023) Molecular Docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 13(1):13398. (PMID: 375920121043557610.1038/s41598-023-40160-2)
Ahmad A (2019) Breast cancer statistics: recent trends. Breast cancer metastasis and drug resistance: challenges and progress, : pp. 1–7.
Ahmad B et al (2022) Identification of natural marine compounds as potential inhibitors of CDK2 using molecular Docking and molecular dynamics simulation approach. J Biomol Struct Dynamics, : p. 1–11.
Ahmad B (2023) Identification of natural marine compounds as potential inhibitors of CDK2 using molecular docking and molecular dynamics simulation approach. J Biomol Struct Dyn 41(17):8506–8516. (PMID: 3630051210.1080/07391102.2022.2135594)
Ahmad S, Bano N, Raza K (2025) RCSB protein data bank: revolutionising drug discovery and design for over five decades. Med Data Min 8:7–11. (PMID: 10.53388/MDM202508008)
Alhmoud JF et al (2021) DNA damage/repair management in cancers. Advances in Medical Biochemistry, Genomics, Physiology, and Pathology, : pp. 309–339.
Andalib KS et al (2023a) Identification of novel MCM2 inhibitors from catharanthus roseus by pharmacoinformatics, molecular Docking and molecular dynamics simulation-based evaluation. Inf Med Unlocked 39:101251. (PMID: 10.1016/j.imu.2023.101251)
Andalib KS et al (2023b) Identification of novel MCM2 inhibitors from catharanthus roseus by pharmacoinformatics, molecular Docking and molecular dynamics simulation-based evaluation. Inf Med Unlocked, : p. 101251.
Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230. (PMID: 412416410.1126/science.181.4096.223)
Arévalo JMC, Amorim JC (2022) Virtual screening, optimization and molecular dynamics analyses highlighting a Pyrrolo [1, 2-a] Quinazoline derivative as a potential inhibitor of DNA gyrase B of Mycobacterium tuberculosis. Sci Rep 12(1):4742. (PMID: 35304513893345210.1038/s41598-022-08359-x)
Arulrajah B et al (2022) Antibacterial and antifungal activity of Kenaf seed peptides and their effect on Microbiological safety and physicochemical properties of some food models. Food Control 140:109119. (PMID: 10.1016/j.foodcont.2022.109119)
Arulrajah B et al (2023a) Elucidating the mechanisms underlying the action of Kenaf seed peptides mixture against gram-positive and gram-negative bacteria and its efficacy in whole milk preservation. Lwt 181:114757. (PMID: 10.1016/j.lwt.2023.114757)
Arulrajah B et al (2023b) Elucidating the mechanisms underlying the action of kenaf seed peptides mixture against gram-positive and gram-negative bacteria and its efficacy in whole milk preservation. LWT, : p. 114757.
Azam F (2019) Rutin as promising drug for the treatment of Parkinson’s disease: an assessment of MAO-B inhibitory potential by docking, molecular dynamics and DFT studies. Mol Simul 45(18):1563–1571. (PMID: 10.1080/08927022.2019.1662003)
Bai Q et al (2022) Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. WIREs Comput Mol Sci 12(3):e1581. (PMID: 10.1002/wcms.1581)
Banerjee R, Perera L, Tillekeratne LV (2021) Potential SARS-CoV-2 main protease inhibitors. Drug Discov Today 26(3):804–816. (PMID: 3330953310.1016/j.drudis.2020.12.005)
Banerjee J et al (2025) Signaling molecules: importance in health and disease Conditions, in Neuroreceptor endocytosis and signaling in health and disease. Springer, pp 19–60.
Beigel JH et al (2020) Remdesivir for the treatment of Covid-19. N Engl J Med 383(19):1813–1826. (PMID: 3244544010.1056/NEJMoa2007764)
Bender BJ et al (2021) A practical guide to large-scale Docking. Nat Protoc 16(10):4799–4832. (PMID: 34561691852265310.1038/s41596-021-00597-z)
Berman HM, Burley SK (2025) Protein data bank (PDB): fifty-three years young and having a transformative impact on science and society. Q Rev Biophys 58:e9. (PMID: 3997335610.1017/S0033583525000034)
Berman HM (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. (PMID: 1059223510247210.1093/nar/28.1.235)
Betzi S et al (2011) Discovery of a potential allosteric ligand binding site in CDK2. ACS Chem Biol 6(5):492–501. (PMID: 21291269309894110.1021/cb100410m)
Bian H et al (2024) Understanding the reversible binding of a multichain protein–protein complex through free-energy calculations. J Phys Chem B 128(15):3598–3604. (PMID: 3857423210.1021/acs.jpcb.4c00519)
Bissaro M, Sturlese M, Moro S (2020) Exploring the RNA-recognition mechanism using supervised molecular dynamics (SuMD) simulations: toward a rational design for ribonucleic-targeting molecules? Front Chem 8:107. (PMID: 32175307705714410.3389/fchem.2020.00107)
Borbulevych O, Westerhoff LM (2024) Recent advances in practical quantum mechanics and M ixed-QM/MM‐Driven X‐Ray crystallography and cryogenic electron microscopy (Cryo‐EM) and their impact on Structure‐Based drug discovery. Comput Drug Discovery: Methods Appl 1:157–182. (PMID: 10.1002/9783527840748.ch7)
Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25(6):1340. (PMID: 32187986714456410.3390/molecules25061340)
Brooks CL (1987) Computer simulation of liquids: By MP Allen (University of Bristol) and DJ Tildesley (Southampton University). Clarendon Press, Oxford, UK; Oxford University Press, New York; xix + 385 pp. ISBN 0470-20812-0. 1989, Springer.
Brooks CL ((1990)) Proteins: a theoretical perspective of dynamics, structure and thermodynamics. Phys Today. https://doi.org/10.1063/1.2810459. (PMID: 10.1063/1.2810459)
Cao L et al (2022) Design of protein-binding proteins from the target structure alone. Nature 605(7910):551–560. (PMID: 35332283911715210.1038/s41586-022-04654-9)
Caparotta M, Perez A (2024) Advancing molecular dynamics: toward standardization, integration, and data accessibility in structural biology. J Phys Chem B 128(10):2219–2227. (PMID: 3841828810.1021/acs.jpcb.3c04823)
Carugo O (2007) Statistical validation of the root-mean-square-distance, a measure of protein structural proximity. Protein Eng Des Sel 20(1):33–37. (PMID: 1721833310.1093/protein/gzl051)
Chen J et al (2024) Conformations of KRAS4B affected by its partner binding and G12C mutation: insights from GaMD trajectory-image transformation-based deep learning. J Chem Inf Model 64(17):6880–6898. (PMID: 3919706110.1021/acs.jcim.4c01174)
Chen J (2025) Activity regulation and conformation response of Janus kinase 3 mediated by phosphorylation: exploration from correlation network analysis and Markov model. J Chem Inf Model 65(8):4189–4205. (PMID: 4019955510.1021/acs.jcim.5c00096)
Chohan TA (2014) Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents. Curr Med Chem 22(2):237–263. (PMID: 10.2174/0929867321666141106113633)
Choudhary MI et al (2020) In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS ONE 15(7):e0235030. (PMID: 32706783738063810.1371/journal.pone.0235030)
Costa MG et al (2024) Computational biophysics meets cryo-EM revolution in the search for the functional dynamics of biomolecular systems. WIREs Comput Mol Sci 14(1):e1689. (PMID: 10.1002/wcms.1689)
Cui J et al (2018) Molecular dynamics simulation of S. cerevisiae glucan destruction by plasma ROS based on ReaxFF. J Phys D 51(35):355401. (PMID: 10.1088/1361-6463/aad4ec)
De la Rosa A et al (2020) Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci 9(5):394–404. (PMID: 32780691749862010.1016/j.jshs.2020.01.004)
De Vivo M et al (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59(9):4035–4061. (PMID: 2680764810.1021/acs.jmedchem.5b01684)
Deepasree K, Subhashree V (2023) Molecular docking and dynamic simulation studies of terpenoid compounds against phosphatidylinositol-specific phospholipase C from Listeria monocytogenes. Inf Med Unlocked 39:101252. (PMID: 10.1016/j.imu.2023.101252)
Deepasree K, Venugopal S (2023) Molecular Docking and dynamic simulation studies of terpenoid compounds against phosphatidylinositol-specific phospholipase C from Listeria monocytogenes. Inf Med Unlocked, : p. 101252.
Dey D et al (2021) Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: an in silico approach of targeted drug designing. J Adv Vet Anim Res 8(1):24. (PMID: 33860009804334010.5455/javar.2021.h481)
Dhillon A, Singh A, Bhalla VK (2023) A systematic review on biomarker identification for cancer diagnosis and prognosis in multi-omics: from computational needs to machine learning and deep learning. Arch Comput Methods Eng 30(2):917–949. (PMID: 10.1007/s11831-022-09821-9)
Dong L, Li P, Wang B (2025) Enhancing MM/P (G) BSA methods: integration of formulaic entropy for improved binding free energy calculations. J Comput Chem 46(10):e70093. (PMID: 4019775410.1002/jcc.70093)
Du X et al (2016) Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2):144. (PMID: 26821017478387810.3390/ijms17020144)
Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:1–9. (PMID: 10.1186/1741-7007-9-71)
Ebihara S et al (2014) Thermal taste and anti-aspiration drugs: a novel drug discovery against pneumonia. Curr Pharm Des 20(16):2755–2759. (PMID: 2388638010.2174/13816128113199990567)
Eigenfeld M, Lupp KF, Schwaminger SP (2024) Role of natural binding proteins in therapy and diagnostics. Life 14(5):630. (PMID: 387926501112260110.3390/life14050630)
Enogieru AB et al (2018) Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxidative Med Cell Longev 2018(1):6241017. (PMID: 10.1155/2018/6241017)
Epstein CJ, Goldberger RF, Anfinsen CB (1963) The genetic control of tertiary protein structure: studies with model systems. Cold spring harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press.
Esmaeeli R, Bauzá A, Perez A (2023) Structural predictions of protein–DNA binding: MELD-DNA. Nucleic Acids Res 51(4):1625–1636. (PMID: 36727436997688210.1093/nar/gkad013)
Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16(3):159–172. (PMID: 2569715910.1038/nrn3901)
Fu H et al (2022) Accurate determination of protein: ligand standard binding free energies from molecular dynamics simulations. Nat Protoc 17(4):1114–1141. (PMID: 352776951008267410.1038/s41596-021-00676-1)
Galano-Frutos JJ, Nerín-Fonz F, Sancho J (2023) Calculation of protein folding thermodynamics using molecular dynamics simulations. J Chem Inf Model 63(24):7791–7806. (PMID: 379554281075179310.1021/acs.jcim.3c01107)
Galindo-Murillo R, Cohen JS, Akabayov B (2021) Molecular dynamics simulations of acyclic analogs of nucleic acids for antisense inhibition. Mol Ther 23:527–535.
Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of Rutin. Saudi Pharm J 25(2):149–164. (PMID: 2834446510.1016/j.jsps.2016.04.025)
Ganser LR et al (2019) The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol 20(8):474–489. (PMID: 31182864765666110.1038/s41580-019-0136-0)
Gao J et al (2022) Precise estimation of residue relative solvent accessible area from Cα atom distance matrix using a deep learning method. Bioinformatics 38(1):94–98. (PMID: 10.1093/bioinformatics/btab616)
Garbagnoli M et al (2024) Biophysical assays for investigating modulators of macromolecular complexes: an overview. ACS Omega 9(16):17691–17705. (PMID: 386803671104417410.1021/acsomega.4c01309)
Gayathiri E et al (2023) Computational approaches for modeling and structural design of biological systems: a comprehensive review. Prog Biophys Mol Biol 185:17–32. (PMID: 3782104810.1016/j.pbiomolbio.2023.08.002)
Geng H et al (2019) Applications of molecular dynamics simulation in structure prediction of peptides and proteins. Comput Struct Biotechnol J 17:1162–1170. (PMID: 31462972670936510.1016/j.csbj.2019.07.010)
Gershenson A et al (2020) Successes and challenges in simulating the folding of large proteins. J Biol Chem 295(1):15–33. (PMID: 3171231410.1074/jbc.REV119.006794)
Gervasoni S et al (2022) AB-DB: Force-Field parameters, MD trajectories, QM-based data, and descriptors of antimicrobials. Sci Data 9(1):148. (PMID: 35365662897608310.1038/s41597-022-01261-1)
Ghalami-Choobar B, Moghadam H (2018) Molecular docking based on virtual screening, molecular dynamics and atoms in molecules studies to identify the potential human epidermal receptor 2 intracellular domain inhibitors. Phys Chem Res 6(1):83–103.
Ghosh R et al ((2021)) Evaluation of green tea polyphenols as novel Corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn 39(12):4362–4374. (PMID: 3256861310.1080/07391102.2020.1779818)
Gogoi B et al (2021a) Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Mol Divers 25(3):1963–1977. (PMID: 33856591804760210.1007/s11030-021-10211-9)
Gogoi B (2021) Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Mol Divers 25:1963–1977. (PMID: 33856591804760210.1007/s11030-021-10211-9)
Goldstein NS, Armin M (2001) Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer 92(5):1331–1346. (PMID: 1157175010.1002/1097-0142(20010901)92:5<1331::AID-CNCR1455>3.0.CO;2-M)
González MA (2011) Force fields and molecular dynamics simulations. École thématique De La Société Française De La Neutronique 12:169–200. (PMID: 10.1051/sfn/201112009)
Gozari M et al (2021) Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem 210:112957. (PMID: 3316076010.1016/j.ejmech.2020.112957)
Grassmann G et al (2024) Computational approaches to predict protein–protein interactions in crowded cellular environments. Chem Rev 124(7):3932–3977. (PMID: 385358311100996510.1021/acs.chemrev.3c00550)
Grishaev A, Bax A (2004) An empirical backbone – backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation. J Am Chem Soc 126(23):7281–7292. (PMID: 1518616510.1021/ja0319994)
Gu S (2023) Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning? Brief Bioinform 24(2):bbad008. (PMID: 3668190310.1093/bib/bbad008)
Guterres H, Im W (2020) Improving protein-ligand Docking results with high-throughput molecular dynamics simulations. J Chem Inf Model 60(4):2189–2198. (PMID: 32227880753454410.1021/acs.jcim.0c00057)
Hasan AH et al (2022) In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Struct Chem 33(5):1645–1665. (PMID: 10.1007/s11224-022-01996-y)
Hatami S et al (2023) Preparing a database of corrected protein structures important in cell signaling pathways. Res Pharm Sci 18(1):67–78. (PMID: 3684673010.4103/1735-5362.363597)
He X (2025) Machine learning interatomic potentials in biomolecular modeling: principles, architectures, and applications. Biophys Rev, : p. 1–13.
Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143. (PMID: 30236283620909710.1016/j.neuron.2018.08.011)
Howard A et al (2012) Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3(3):243–250. (PMID: 22546906344283610.4161/viru.19700)
Howe J, Barbar EJ (2025) Dynamic interactions of dimeric hub proteins underlie their diverse functions and structures: a comparative analysis of 14-3-3 and LC8. J Biol Chem. https://doi.org/10.1016/j.jbc.2025.108416. (PMID: 10.1016/j.jbc.2025.1084164123790912017986)
Hu X (2023) Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chem 405:134824. (PMID: 3637055410.1016/j.foodchem.2022.134824)
Huang W et al (2015) Structural insights into µ-opioid receptor activation. Nature 524(7565):315–321. (PMID: 26245379463939710.1038/nature14886)
Iqbal D et al (2021) High-throughput screening and molecular dynamics simulation of natural product-like compounds against Alzheimer’s disease through multitarget approach. Pharmaceuticals 14(9):937. (PMID: 34577637846678710.3390/ph14090937)
Ivani I et al (2016) Parmbsc1: a refined force field for DNA simulations. Nat Methods 13(1):55–58. (PMID: 2656959910.1038/nmeth.3658)
Izadi ME, Sabzyan H (2022) Reactive molecular dynamics simulation of the structural damages of the B-DNA induced by the oxidation/nitration of guanine. J Phys Chem B 126(49):10347–10359. (PMID: 3644896410.1021/acs.jpcb.2c05151)
JC K et al (1960) Structure of myoglobin: A three-dimensional fourier synthesis at 2 A. resolution. Nature 185(4711):422–427. (PMID: 10.1038/185422a0)
Jespers W, Åqvist J (2021) and H. Gutiérrez-de-Terán, Free energy calculations for protein–ligand binding prediction. Protein-Ligand Interactions and Drug Design, pp 203–226.
Jiang X et al (2020) Molecular dynamics simulations informed by membrane lipidomics reveal the structure–interaction relationship of polymyxins with the lipid A-based outer membrane of Acinetobacter baumannii. J Antimicrob Chemother 75(12):3534–3543. (PMID: 32911540766217710.1093/jac/dkaa376)
Jin Z, Wei Z (2024) Molecular simulation for food protein–ligand interactions: a comprehensive review on principles, current applications, and emerging trends. Compr Rev Food Sci Food Saf 23(1):e13280. (PMID: 3828457110.1111/1541-4337.13280)
Jin Z et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293. (PMID: 3227248110.1038/s41586-020-2223-y)
Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652. (PMID: 1219848510.1038/nsb0902-646)
Keretsu S, Bhujbal SP, Cho SJ (2020) Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci Rep 10(1):17716. (PMID: 33077821757258310.1038/s41598-020-74468-0)
Khalak Y et al (2021) Alchemical absolute protein–ligand binding free energies for drug design. Chem Sci 12(41):13958–13971. (PMID: 34760182854978510.1039/D1SC03472C)
Knight C et al (2010) Defining condensed phase reactive force fields from ab initio molecular dynamics simulations: the case of the hydrated excess proton. J Chem Theory Comput 6(10):3223–3232. (PMID: 2661678410.1021/ct1004438)
Konstantinidis K et al (2021) On the estimation of the molecular inaccessible volume and the molecular accessible surface of a ligand in protein–ligand systems. Mol Syst Des Eng 6(11):946–963. (PMID: 10.1039/D1ME00053E)
Kufareva I, Abagyan R (2012) Methods of protein structure comparison. Homology modeling: Methods and protocols, : pp. 231–257.
Kumar S, Singh B, Singh R (2022) Catharanthus roseus (L.) G. Don: a review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. J Ethnopharmacol 284:114647. (PMID: 3456256210.1016/j.jep.2021.114647)
Kumar A (2023) Identification of potential DNA gyrase inhibitors: virtual screening, extra-precision docking and molecular dynamics simulation study. Chem Pap 77(11):6717–6727. (PMID: 10.1007/s11696-023-02971-5)
Kuzmanic A et al (2020) Investigating cryptic binding sites by molecular dynamics simulations. Acc Chem Res 53(3):654–661. (PMID: 32134250726390610.1021/acs.accounts.9b00613)
Le QH (2023) A molecular dynamics investigation of the atomic structural behavior of the interaction between amyloid beta protein and aspirin within an aqueous nanodomain. Eng Anal Boundary Elem 146:851–858. (PMID: 10.1016/j.enganabound.2022.11.018)
Lee C, Su B-H, Tseng YJ (2022) Comparative studies of AlphaFold, RosettaFold and Modeller: a case study involving the use of G-protein-coupled receptors. Brief Bioinform 23(5):bbac308. (PMID: 35945035948761010.1093/bib/bbac308)
Lester A et al (2023) Computational exploration of potential CFTR binding sites for type i corrector drugs. Biochemistry 62(16):2503–2515. (PMID: 3743730810.1021/acs.biochem.3c00165)
Li L et al (2024a) Protein-based controllable nanoarchitectonics for desired applications. Adv Funct Mater 34(29):2315509. (PMID: 10.1002/adfm.202315509)
Li Y et al (2024b) Molecular dynamics simulation research on the interaction between plasma and living organisms: a comprehensive review. Plasma Process Polym 21(2):2300119. (PMID: 10.1002/ppap.202300119)
Li C et al (2025) Comprehensive evaluation of End-Point free energy methods in DNA–Ligand interaction predictions. J Chem Inf Model 65(4):2014–2025. (PMID: 3988834910.1021/acs.jcim.4c01947)
Liebl K, Zacharias M (2021) Tumuc1: a new accurate DNA force field consistent with high-level quantum chemistry. J Chem Theory Comput 17(11):7096–7105. (PMID: 3466210210.1021/acs.jctc.1c00682)
Limongelli V (2020) Ligand binding free energy and kinetics calculation in 2020. Wiley Interdisciplinary Reviews: Comput Mol Sci 10(4):e1455.
Liu S, Wu K, Chen C (2022) Obtaining protein foldability information from computational models of AlphaFold2 and rosettafold. Comput Struct Biotechnol J 20:4481–4489. (PMID: 36051869942109010.1016/j.csbj.2022.08.034)
Lobanov MY, Bogatyreva N, Galzitskaya O (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42:623–628. (PMID: 10.1134/S0026893308040195)
Lukasheva N et al (2022) Changes in the local conformational states caused by simple Na + and K + ions in polyelectrolyte simulations: comparison of seven force fields with and without NBFIX and ECC corrections. Polymers (Basel) 14(2):252. (PMID: 3505465910.3390/polym14020252)
Manigrasso J, Marcia M, De Vivo M (2021) Computer-aided design of RNA-targeted small molecules: a growing need in drug discovery. Chem 7(11):2965–2988. (PMID: 10.1016/j.chempr.2021.05.021)
Marrink S-J, Berendsen HJ (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98(15):4155–4168. (PMID: 10.1021/j100066a040)
Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE 10(3):e0119264. (PMID: 25816325437679710.1371/journal.pone.0119264)
Maruyama Y (2023) Analysis of protein folding simulation with moving root mean square deviation. J Chem Inf Model 63(5):1529–1541. (PMID: 368215191001546410.1021/acs.jcim.2c01444)
Matta DK (2021) Role of protonation state changes and hydrogen bonding around the oxygen evolving complex of photosystem II. City University of New York.
Mattick J, Amaral P (2023) RNA, the epicenter of genetic information. Taylor & Francis.
Maveyraud L, Mourey L (2020) Protein X-ray crystallography and drug discovery. Molecules 25(5):1030. (PMID: 32106588717921310.3390/molecules25051030)
Merzouki M et al (2025) Computational engineering of Malonate and tetrazole derivatives targeting SARS-CoV-2 main protease: pharmacokinetics, docking, and molecular dynamics insights to support the sustainable development goals (SDGs), with a bibliometric analysis. Indones J Sci Technol 10(2):399–418. (PMID: 10.17509/ijost.v10i2.85146)
Michalak EM et al (2019) The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 20(10):573–589. (PMID: 3127044210.1038/s41580-019-0143-1)
Mirza FJ et al (2022) Multitargeted molecular docking and dynamic simulation studies of bioactive compounds from Rosmarinus officinalis against alzheimer’s disease. Molecules 27(21):7241. (PMID: 36364071965378510.3390/molecules27217241)
Mohanty M, Mohanty PS (2023) Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Monatshefte für Chemie-Chemical Monthly 154(7):683–707. (PMID: 10.1007/s00706-023-03076-1)
Nada H, Elkamhawy A, Lee K (2022) Identification of 1H-purine-2, 6-dione derivative as a potential SARS-CoV-2 main protease inhibitor: molecular docking, dynamic simulations, and energy calculations. PeerJ 10:e14120. (PMID: 36225900954988810.7717/peerj.14120)
Nair AS et al (2021) Development of halogenated pyrazolines as selective monoamine oxidase-B inhibitors: deciphering via molecular dynamics approach. Molecules 26(11):3264. (PMID: 34071665819864910.3390/molecules26113264)
Narayan A et al (2023) UncertainSCI: uncertainty quantification for computational models in biomedicine and bioengineering. Comput Biol Med 152:106407. (PMID: 3652135810.1016/j.compbiomed.2022.106407)
Oliveira GSd et al (2023) Prospecting in silico antibacterial activity of a peptide from trypsin inhibitor isolated from tamarind seed. J Enzyme Inhib Med Chem 38(1):67–83. (PMID: 3630529110.1080/14756366.2022.2134997)
Pallante L et al (2024) Virtuouspocketome: a computational tool for screening protein–ligand complexes to identify similar binding sites. Sci Rep 14(1):6296. (PMID: 384912611094301910.1038/s41598-024-56893-7)
Panchalingam S, Kasivelu G, Jayaraman M (2025) Computational modeling and molecular dynamic simulations of gold nanoparticles, in Gold Nanoparticles, nanomaterials and nanocomposites. Elsevier, pp 869–893.
Pantsar T (2020) The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J 18:189–198. (PMID: 3198870510.1016/j.csbj.2019.12.004)
Park BS, Lee J-O (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45(12):e66–e66. (PMID: 24310172388046210.1038/emm.2013.97)
Parvatikar PP et al (2023) Artificial intelligence: machine learning approach for screening large database and drug discovery. Antiviral Res 220:105740. (PMID: 3793524810.1016/j.antiviral.2023.105740)
Pastor RW (1994) Molecular dynamics and monte carlo simulations of lipid bilayers. Curr Opin Struct Biol 4(4):486–492. (PMID: 10.1016/S0959-440X(94)90209-7)
Patel L, Grossberg GT (2011) Combination therapy for Alzheimer’s disease. Drugs Aging 28:539–546. (PMID: 2172159810.2165/11591860-000000000-00000)
Patel HM et al (2021a) In Silico search of triple mutant T790M/C797S allosteric inhibitors to conquer acquired resistance problem in non-small cell lung cancer (NSCLC): a combined approach of structure-based virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 39(4):1491–1505. (PMID: 3210262410.1080/07391102.2020.1734092)
Patel HM et al (2021b) BREED based de novo hybridization approach: generating novel T790M/C797S-EGFR tyrosine kinase inhibitors to overcome the problem of mutation and resistance in Non small cell lung cancer (NSCLC). J Biomol Struct Dyn 39(8):2838–2856. (PMID: 3227658010.1080/07391102.2020.1754918)
Patil VM et al (2024) Experimental and computational models to understand protein-ligand, metal-ligand and metal-DNA interactions pertinent to targeted cancer and other therapies. European Journal of Medicinal Chemistry Reports 10:100133. (PMID: 10.1016/j.ejmcr.2024.100133)
Peyrani P et al (2019) The burden of community-acquired bacterial pneumonia in the era of antibiotic resistance. Expert Rev Respir Med 13(2):139–152. (PMID: 3059630810.1080/17476348.2019.1562339)
Piana S et al (2020) Development of a force field for the simulation of single-chain proteins and protein–protein complexes. J Chem Theory Comput 16(4):2494–2507. (PMID: 3191431310.1021/acs.jctc.9b00251)
Pirnia A (2024) Perspective on integrative simulations of bioenergetic domains. J Phys Chem B 128(14):3302–3319. (PMID: 3856210510.1021/acs.jpcb.3c07335)
Qiu Y et al (2020) Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur J Med Chem 207:112764. (PMID: 3287134010.1016/j.ejmech.2020.112764)
Ramachandran G (2014) Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 5(1):213–218. (PMID: 2419336510.4161/viru.27024)
Rehman M et al (2020) Therapeutic and vaccine strategies against SARS-CoV-2: past, present and future. Future Virol 15(7):471–482. (PMID: 10.2217/fvl-2020-0137)
Rehman AU et al (2023) Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opin Drug Discov 18(3):315–333. (PMID: 367153031014934310.1080/17460441.2023.2171396)
Rifai EA, Van Dijk M, Geerke DP (2020) Recent developments in linear interaction energy based binding free energy calculations. Front Mol Biosci 7:114. (PMID: 32626725731176310.3389/fmolb.2020.00114)
Sachse M et al (2022) Unraveling the antiviral activity of plitidepsin against SARS-CoV-2 by subcellular and morphological analysis. Antiviral Res 200:105270. (PMID: 35231500888142210.1016/j.antiviral.2022.105270)
Sadr AS et al (2021) In silico studies reveal structural deviations of mutant profilin-1 and interaction with riluzole and edaravone in amyotrophic lateral sclerosis. Sci Rep 11(1):6849. (PMID: 33767237799439210.1038/s41598-021-86211-4)
Salo-Ahen OM (2020) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9(1):71. (PMID: 10.3390/pr9010071)
Schmid M, Jensen TH (2018) Controlling nuclear RNA levels. Nat Rev Genet 19(8):518–529. (PMID: 2974857510.1038/s41576-018-0013-2)
Shastry KA, Sanjay H (2021) Computational intelligence, machine learning and deep learning techniques for effective future predictions of COVID-19: a review. Understanding COVID-19: The Role of Computational Intelligence, : pp. 379–402.
Shukla R, Tripathi T (2020) Molecular dynamics simulation of protein and protein–ligand complexes. Computer-aided drug design, : pp. 133–161.
Singh S, Baker QB, Singh DB (2022a) Molecular Docking and molecular dynamics simulation, in Bioinformatics. Elsevier, pp 291–304.
Singh V (2022) Recent trends in computational tools and data-driven modeling for advanced materials. Mater Adv 3(10):4069–4087. (PMID: 10.1039/D2MA00067A)
Sk MF et al (2021) Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn 39(10):3649–3661. (PMID: 3239676710.1080/07391102.2020.1768149)
Skariyachan S et al (2020) Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies-deciphering the scope of repurposed drugs. Comput Biol Med 126:104054. (PMID: 33074111755429710.1016/j.compbiomed.2020.104054)
Sneha P, Doss CGP (2016) Molecular dynamics: new frontier in personalized medicine. Adv Protein Chem Struct Biol 102:181–224. (PMID: 2682760610.1016/bs.apcsb.2015.09.004)
Soejima K, Yasuda H, Hirano T (2017) Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer. Expert Rev Clin Pharmacol 10(1):31–38. (PMID: 2788583810.1080/17512433.2017.1265446)
Sohrab SS, Kamal MA (2022) Screening, docking, and molecular dynamics study of natural compounds as an anti-HER2 for the management of breast cancer. Life 12(11):1729. (PMID: 36362883969305810.3390/life12111729)
Solanki V, Tiwari V (2018a) Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 8(1):9044. (PMID: 29899345599798510.1038/s41598-018-26689-7)
Solanki V, Tiwari V (2018b) Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 8(1):1–19. (PMID: 10.1038/s41598-018-26689-7)
Spahn V et al (2017) A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 355(6328):966–969. (PMID: 2825494410.1126/science.aai8636)
Šponer J et al (2018) RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev 118(8):4177. (PMID: 29297679592094410.1021/acs.chemrev.7b00427)
Standish AJ et al (2012) Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production. PLoS ONE 7(5):e36312. (PMID: 22629313335697710.1371/journal.pone.0036312)
Sze SCW et al (2010) Herba epimedii: anti-oxidative properties and its medical implications. Molecules 15(11):7861–7870. (PMID: 21060294625923410.3390/molecules15117861)
Tan KP et al (2021) Peptide bond planarity constrains hydrogen bond geometry and influences secondary structure conformations. Curr Res Struct Biol 3:1–8. (PMID: 3438200910.1016/j.crstbi.2020.11.002)
Tang Q-Y (2022) The statistical trends of protein evolution: a lesson from alphafold database. Mol Biol Evol 39(10):msac197. (PMID: 36108094955099010.1093/molbev/msac197)
Tao K et al (2021) SARS-CoV-2 antiviral therapy. Clin Microbiol Rev 34(4):e00109–e00121. (PMID: 34319150840483110.1128/CMR.00109-21)
Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7(11):833–846. (PMID: 1705775310.1038/nrm2039)
Tshilande N, Mammino L, Bilonda MK (2024) The study of molecules and processes in solution: an overview of questions, approaches and applications. Computation 12(4):78. (PMID: 10.3390/computation12040078)
Tuccinardi T (2021) What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opin Drug Discov 16(11):1233–1237. (PMID: 3416501110.1080/17460441.2021.1942836)
Tucker MR et al (2022) Development of force field parameters for the simulation of single-and double-stranded DNA molecules and DNA–protein complexes. J Phys Chem B 126(24):4442–4457. (PMID: 35694853923496010.1021/acs.jpcb.1c10971)
Vairo C et al (2023a) Colistin-and amikacin-loaded lipid-based drug delivery systems for resistant gram-negative lung and wound bacterial infections. Int J Pharm 635:122739. (PMID: 3680136310.1016/j.ijpharm.2023.122739)
Vairo C et al (2023b) Colistin-and Amikacin-loaded lipid-based drug delivery systems for resistant gram-negative lung and wound bacterial infections. Int J Pharm, : p. 122739.
Varona JF et al (2022) Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life science alliance, 5(4).
Venkatakrishnan A (2017) GPCR dynamics: structures in motion.
Verma P, Tiwari M, Tiwari V (2018) Silico high-throughput virtual screening and molecular dynamics simulation study to identify inhibitor for AdeABC efflux pump of acinetobacter baumannii. J Biomol Struct Dyn 36(5):1182–1194. (PMID: 2839367710.1080/07391102.2017.1317025)
Vishvakarma VK et al (2022a) Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations. Amino acids, : pp. 1–9.
Vishvakarma VK et al (2022b) Hunting the main protease of SARS-CoV-2 by plitidepsin: molecular docking and temperature-dependent molecular dynamics simulations. Amino Acids 54(2):205–213. (PMID: 3480731410.1007/s00726-021-03098-1)
Wan J et al (2021) Molecular dynamics simulations reveal the destabilization mechanism of Alzheimer’s disease-related Tau R3-R4 protofilament by norepinephrine. Biophys Chem 271:106541. (PMID: 3351586010.1016/j.bpc.2021.106541)
Wang Z et al (2022a) Exploring the resistance mechanisms of distal D835V mutation in FLT3 to inhibitors. Oxid Med Cell Longev 2022(1):3720026. (PMID: 35387260897974310.1155/2022/3720026)
Wang X et al (2022b) Pharmacological mechanism and therapeutic efficacy of Icariside II in the treatment of acute ischemic stroke: a systematic review and network pharmacological analysis. BMC Complement Med Ther 22(1):253. (PMID: 36180911952629810.1186/s12906-022-03732-9)
Wang X et al (2022c) Pharmacological mechanism and therapeutic efficacy of Icariside II in the treatment of acute ischemic stroke: a systematic review and network pharmacological analysis. BMC Complement Med Ther 22(1):1–18. (PMID: 10.1186/s12906-022-03732-9)
Weerakoon D et al (2023) Interactions of polymyxin B1 with the gram-negative inner membrane: A simulation study. Biophys J 122(3):371a. (PMID: 10.1016/j.bpj.2022.11.2043)
Wei J et al (2022) Protein–RNA interaction prediction with deep learning: structure matters. Brief Bioinform 23(1):bbab540. (PMID: 3492973010.1093/bib/bbab540)
Wolf S (2023) Predicting protein–ligand binding and unbinding kinetics with biased MD simulations and coarse-graining of dynamics: current state and challenges. J Chem Inf Model 63(10):2902–2910. (PMID: 3713339210.1021/acs.jcim.3c00151)
Xu Z-Q, Flavin MT, Flavin J (2014) Combating multidrug-resistant gram-negative bacterial infections. Expert Opin Investig Drugs 23(2):163–182. (PMID: 2421547310.1517/13543784.2014.848853)
Xu M, Zhu T, Zhang JZ (2021) Automatically constructed neural network potentials for molecular dynamics simulation of zinc proteins. Front Chem 9:692200. (PMID: 34222200824973610.3389/fchem.2021.692200)
Yang S, Kar S, Leszczynski J (2023) Tools and software for computer-aided drug design and discovery. Cheminformatics, QSAR and machine learning applications for novel drug development. Elsevier, pp 637–661.
Yekeen AA et al (2023) CHAPERONg: A tool for automated GROMACS-based molecular dynamics simulations and trajectory analyses. Comput Struct Biotechnol J 21:4849–4858. (PMID: 378546351057986910.1016/j.csbj.2023.09.024)
Yoo J, Aksimentiev A (2016) Improved parameterization of amine–carboxylate and amine–phosphate interactions for molecular dynamics simulations using the CHARMM and AMBER force fields. J Chem Theory Comput 12(1):430–443. (PMID: 2663296210.1021/acs.jctc.5b00967)
Zaman Z (2021) Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations. Life Sci 264:118621. (PMID: 3316483210.1016/j.lfs.2020.118621)
Zeng J et al (2025) DeePMD-GNN: a DeePMD-kit plugin for external graph neural network potentials. J Chem Inf Model 65(7):3154–3160. (PMID: 401508041203020910.1021/acs.jcim.4c02441)
Zhang L et al (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):409–412. (PMID: 32198291716451810.1126/science.abb3405)
Zhou J et al (2019) Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomed Pharmacother 111:315–324. (PMID: 3059031910.1016/j.biopha.2018.10.201)
Zhu K-F (2023) Applications and prospects of cryo-EM in drug discovery. Mil Med Res 10(1):10. (PMID: 368723499986049)
Grant Information:
Fundamental Fund 2025 Chiang Mai University and Center of Excellence for Innovation in Chemistry. Partially supported by CMU Proactive Researcher Scheme (2024), Chiang Mai University; Fundamental Fund 2025 Chiang Mai University and Center of Excellence for Innovation in Chemistry. Partially supported by CMU Proactive Researcher Scheme (2024), Chiang Mai University
Contributed Indexing:
Keywords: Biomolecules; Drug design; Inhibitor development; Molecular dynamic simulations; Proteins
Substance Nomenclature:
0 (Proteins)
Entry Date(s):
Date Created: 20250926 Date Completed: 20250926 Latest Revision: 20251210
Update Code:
20251210
DOI:
10.1007/s00422-025-01026-0
PMID:
41003729
Database:
MEDLINE

Weitere Informationen

Molecular dynamics (MD) simulations have emerged as a powerful and extensively employed tool in biomedical research, offering insights into intricate biomolecular processes such as structural flexibility and molecular interactions, and playing a pivotal role in the development of therapeutic approaches. Although MD techniques are applied to a variety of biomolecules including DNA, RNA, proteins, and their assemblies, this review focuses specifically on the role of MD in elucidating protein behavior and their interactions with inhibitors across different disease contexts. The selection of an appropriate force field is essential, as it greatly influences the reliability of simulation outcomes. Widely adopted MD software packages such as GROMACS, DESMOND, and AMBER leverage rigorously tested force fields and have shown consistent performance across diverse biological applications. Despite current successes, challenges remain in narrowing the gap between computational models and actual cellular conditions. The integration of machine learning and deep learning technologies is expected to accelerate progress in this evolving field.
(© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Declarations. Competing interests: The authors declare no competing interests.