Treffer: The miR396b-MsGRF1c module positively associates with alfalfa nodule senescence.
Bazin, J., Khan, G.A., Combier, J., Bustos‐Sanmamed, P., Debernardi, J.M., Rodriguez, R. et al. (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. The Plant Journal, 74, 920–934.
Berrabah, F., Bourcy, M., Eschstruth, A., Cayrel, A., Guefrachi, I., Mergaert, P. et al. (2014) A nonRD receptor‐like kinase prevents nodule early senescence and defense‐like reactions during symbiosis. New Phytologist, 203, 1305–1314.
Cao, D.Y., Wang, J., Ju, Z., Liu, Q.Q., Li, S., Tian, H.Q. et al. (2016) Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Plant Science, 247, 1–12.
Dalton, D.A., Boniface, C., Turner, Z., Lindahl, A., Kim, H.J., Jelinek, L. et al. (2009) Physiological roles of glutathione S‐transferases in soybean root nodules. Plant Physiology, 150, 521–530.
Debernardi, J.M., Mecchia, M.A., Vercruyssen, L., Smaczniak, C., Kaufmann, K., Inze, D. et al. (2014) Post‐transcriptional control of GRF transcription factors by microRNA miR396 and GIF co‐activator affects leaf size and longevity. The Plant Journal, 79, 413–426.
Deng, J., Zhu, F.G., Liu, J.X., Zhao, Y.F., Wen, J.Q., Wang, T. et al. (2019) Transcription factor bHLH2 represses CYSTEINE PROTEASE77 to negatively regulate nodule senescence. Plant Physiology, 181, 1683–1703.
Dixon, R. & Kahn, D. (2004) Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2, 621–631.
Egli, M.A., Griffith, S.M., Miller, S.S., Anderson, M.P. & Vance, C.P. (1989) Nitrogen assimilating enzyme activities and enzyme protein during development and senescence of effective and plant gene‐controlled ineffective alfalfa nodules. Plant Physiology, 91, 898–904.
Fang, L.F., Liu, T., Li, M.Y., Dong, X.M., Han, Y.L., Xu, C.Z. et al. (2024) MODMS: a multi‐omics database for facilitating biological studies on alfalfa (Medicago sativa L.). Horticulture Research, 11, 245.
Ferela, A., Debernardi, J.M., Rosatti, S., Liebsch, D., Schommer, C. & Palatnik, J.F. (2023) Interplay among ZF‐HD and GRF transcription factors during Arabidopsis leaf development. Plant Physiology, 191, 1789–1802.
Ferreira, S., Moreira, E., Amorim, I., Santos, C. & Melo, P. (2019) Arabidopsis thaliana mutants devoid of chloroplast glutamine synthetase (GS2) have non‐lethal phenotype under photorespiratory conditions. Plant Physiology and Biochemistry, 144, 365–374.
Fukudome, M., Watanabe, E., Osuki, K., Imaizumi, R., Aoki, T., Becana, M. et al. (2019) Stably transformed Lotus japonicus plants overexpressing phytoglobin LjGlb1‐1 show decreased nitric oxide levels in roots and nodules as well as delayed nodule senescence. Plant and Cell Physiology, 60, 816–825.
Guerra, J.C.P., Coussens, G., De Keyser, A., De Rycke, R., Bodt, S., Van De Velde, W. et al. (2010) Comparison of developmental and stress‐induced nodule senescence in Medicago truncatula. Plant Physiology, 152, 1574–1584.
Gupta, M.D. & Nath, U. (2015) Divergence in patterns of leaf growth polarity is associated with the expression divergence of miR396. The Plant Cell, 27, 2785–2799.
Hachiya, T., Inaba, J., Wakazaki, M., Sato, M., Toyooka, K., Miyagi, A. et al. (2021) Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nature Communications, 12, 4944.
Herridge, D.F., Peoples, M.B. & Boddey, R.M. (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1–18.
Horvath, B., Domonkos, A., Kereszt, A., Szucs, A., Abraham, E., Ayaydin, F. et al. (2015) Loss of the nodule‐specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proceedings of the National Academy of Sciences of the United States of America, 112, 15232–15237.
Kim, J.H. (2019) Biological roles and an evolutionary sketch of the GRF‐GIF transcriptional complex in plants. BMB Reports, 52, 227–238.
Kim, J.H., Choi, D.S. & Kende, H. (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. The Plant Journal, 36, 94–104.
Kobercova, E., Melo, P. & Fischer, L. (2023) Validating the role of glutamine synthetase GLN2 during photorespiration in Arabidopsis thaliana. Plant Physiology, 194, 324–328.
Kumagai, H., Hakoyama, T., Umehara, Y., Sato, S., Kaneko, T., Tabata, S. et al. (2007) A novel ankyrin‐repeat membrane protein, IGN1, is required for persistence of nitrogen‐fixing symbiosis in root nodules of Lotus japonicus. Plant Physiology, 143, 1293–1305.
Lea, P.J. & Miflin, B.J. (2011) Nitrogen assimilation and its relevance to crop improvement. Annual Plant Reviews online, 42, 1–40.
Li, S., Tian, Y.H., Wu, K., Ye, Y.F., Yu, J.P., Zhang, J.Q. et al. (2018) Modulating plant growth‐metabolism coordination for sustainable agriculture. Nature, 560, 595–600.
Li, Y.X., Zhou, L., Li, Y.G., Chen, D.S., Tan, X.J., Lei, L. et al. (2008) A nodule‐specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytologist, 180, 185–192.
Liao, H., Lee, K., Chung, Y., Chen, S., Hung, Y. & Hsieh, M. (2024) Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. Plant Physiology, 195, 2289–2308.
Liebsch, D. & Palatnik, J.F. (2020) MicroRNA miR396, GRF transcription factors and GIF co‐regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Current Opinion in Plant Biology, 53, 31–42.
Liu, Y.R., Cen, H.F., Yan, J.P., Zhang, Y.W. & Zhang, W.J. (2015) Inside out: high‐efficiency plant regeneration and Agrobacterium‐mediated transformation of upland and lowland switchgrass cultivars. Plant Cell Reports, 34, 1099–1108.
Liu, Y.R., Yan, J.P., Wang, K.X., Li, D.Y., Yang, R., Luo, H. et al. (2021) MiR396‐GRF module associates with switchgrass biomass yield and feedstock quality. Plant Biotechnology Journal, 19, 1523–1536.
Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCt method. Methods, 25, 402–408.
Lopez, S.M.Y., Sanchez, M.D.M., Pastorino, G.N., Franco, M.E.E., Garcia, N.T. & Balatti, P.A. (2018) Nodulation and delayed nodule senescence: strategies of two Bradyrhizobium japonicum isolates with high capacity to fix nitrogen. Current Microbiology, 75, 997–1005.
Luo, Z.P., Lin, J.S., Zhu, Y.L., Fu, M.D., Li, X.L. & Xie, F. (2021) NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN‐CRA2 signaling in Medicago truncatula. Plant Communications, 2, 100183.
Ma, X.S., Xie, X.L., He, Z.D., Wang, F., Fan, R.X., Chen, Q.X. et al. (2023) A LcDOF5.6‐LcRbohD regulatory module controls the reactive oxygen species‐mediated fruitlet abscission in litchi. The Plant Journal, 113, 954–968.
Ma, Y.P., Devi, M.J., Song, L.H., Gao, H.D., Jin, L. & Cao, B. (2024) Multi‐omics integration analysis reveals metabolic regulation of carbohydrate and secondary metabolites during goji berry (Lycium barbarum L.) maturation. Postharvest Biology and Technology, 218, 113184.
Marino, D., Andrio, E., Danchin, E.G.J., Oger, E., Gucciardo, S., Lambert, A. et al. (2011) A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytologist, 189, 580–592.
Marquez‐Garcia, B., Shaw, D., Cooper, J.W., Karpinska, B., Quain, M.D., Makgopa, E.M. et al. (2015) Redox markers for drought‐induced nodule senescence, a process occurring after drought‐induced senescence of the lowest leaves in soybean (Glycine max). Annals of Botany, 116, 497–510.
Matamoros, M.A., Fernandez‐Garcia, N., Wienkoop, S., Loscos, J., Saiz, A. & Becana, M. (2013) Mitochondria are an early target of oxidative modifications in senescing legume nodules. New Phytologist, 197, 873–885.
Montiel, J., Arthikala, M., Cardenas, L. & Quinto, C. (2016) Legume NADPH oxidases have crucial roles at different stages of nodulation. International Journal of Molecular Sciences, 17, 680.
Montiel, J., Nava, N., Cardenas, L., Sanchez‐Lopez, R., Arthikala, M., Santana, O. et al. (2012) A Phaseolus vulgaris NADPH oxidase gene is required for root infection by rhizobia. Plant and Cell Physiology, 53, 1751–1767.
Msehli, S.E., Lambert, A., Hopkins, J., Boncompagni, E., Smiti‐Aschi, S., Herouart, D. et al. (2019) Physiological and genetic changes during natural senescence of Medicago truncatula root nodules. Journal of Plant Nutrition and Soil Science, 182, 385–392.
Omidbakhshfard, M.A., Proost, S., Fujikura, U. & Mueller‐Roeber, B. (2015) Growth‐regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Molecular Plant, 8, 998–1010.
Pierre, O., Hopkins, J., Combier, M., Baldacci, F., Engler, G., Brouquisse, R. et al. (2014) Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytologist, 202, 849–863.
Provorov, N.A., Saimnazarov, U.B., Tanriverdiev, T.A. & Simarov, B.V. (1994) The contributions of plant and bacteria genotypes in the growth and nitrogen accumulation of inoculated alfalfa. Plant and Soil, 164, 213–219.
Puppo, A., Groten, K., Bastian, F., Carzaniga, R., Soussi, M., Lucas, M.M. et al. (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytologist, 165, 683–701.
Reid, D.E., Ferguson, B.J., Hayashi, S., Lin, Y.H. & Gresshoff, P.M. (2011) Molecular mechanisms controlling legume autoregulation of nodulation. Annals of Botany, 108, 789–795.
Sakamoto, M., Tada, Y., Nakayashiki, H., Tosa, Y. & Mayama, S. (2005) Two phases of intracellular reactive oxygen species production during victorin‐induced cell death in oats. Journal of General Plant Pathology, 71, 387–394.
Sauviac, L., Remy, A., Huault, E., Dalmasso, M., Kazmierczak, T., Jardinaud, M. et al. (2022) A dual legume‐rhizobium transcriptome of symbiotic nodule senescence reveals coordinated plant and bacterial responses. Plant, Cell & Environment, 45, 3100–3121.
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R. et al. (2012) Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and cufflinks. Nature Protocols, 7, 562–578.
Van de Velde, W., Guerra, J.C.P., De Keyser, A., De Rycke, R., Rombauts, S., Maunoury, N. et al. (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiology, 141, 711–720.
Van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z. et al. (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science, 327, 1122–1126.
Van Hautegem, T., Waters, A.J., Goodrich, J. & Nowack, M.K. (2015) Only in dying, life: programmed cell death during plant development. Trends in Plant Science, 20, 102–113.
Vercruyssen, L., Tognetti, V.B., Gonzalez, N., Van Dingenen, J., De Milde, L., Bielach, A. et al. (2015) GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity. Plant Physiology, 167, 817–832.
Voss, I., Sunil, B., Scheibe, R. & Raghavendra, A.S. (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15, 713–722.
Wang, C. & Fang, J.G. (2015) RLM‐RACE, PPM‐RACE, and qRT‐PCR: an integrated strategy to accurately validate miRNA target genes. Methods in Molecular Biology, 1296, 175–186.
Wang, C., Yu, H.X., Luo, L., Duan, L.J., Cai, L.Y., He, X.X. et al. (2016) NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. New Phytologist, 212, 176–191.
Wang, K.X., Liu, Y.R., Teng, F.K., Cen, H.F., Yan, J.P., Lin, S.W. et al. (2021) Heterogeneous expression of Osa‐MIR156bc increases abiotic stress resistance and forage quality of alfalfa. Crop Journal, 9, 1135–1144.
Wang, L., Yang, J.Y., Tan, W.J., Guo, Y.L., Li, J.Q., Duan, C.T. et al. (2023) Macrophage migration inhibitory factor MtMIF3 prevents the premature aging of Medicago truncatula nodules. Plant, Cell & Environment, 46, 1004–1017.
Wang, L.Y., Tian, Y.C., Shi, W., Yu, P., Hu, Y.F., Lv, J.Y. et al. (2020) The miR396‐GRFs module mediates the prevention of photo‐oxidative damage by brassinosteroids during seedling de‐etiolation in Arabidopsis. The Plant Cell, 32, 2525–2542.
Wang, X.N., Zhou, Y., Chai, X.F., Foster, T.M., Deng, C.H., Wu, T. et al. (2024) miR164‐MhNAC1 regulates apple root nitrogen uptake under low nitrogen stress. New Phytologist, 242, 1218–1237.
Wang, Y.K., Kumaishi, K., Suzuki, T., Ichihashi, Y., Yamaguchi, N., Shirakawa, M. et al. (2020) Morphological and physiological framework underlying plant longevity in Arabidopsis thaliana. Frontiers in Plant Science, 11, 600726.
Wang, Y.W., Li, P.C., Cao, X.F., Wang, X.J., Zhang, A.M. & Li, X. (2009) Identification and expression analysis of miRNAs from nitrogen‐fixing soybean nodules. Biochemical and Biophysical Research Communications, 378, 799–803.
Wei, Q., Ma, C., Xu, Y.J., Wang, T.L., Chen, Y.Y., Lu, J. et al. (2017) Control of chrysanthemum flowering through integration with an aging pathway. Nature Communications, 8, 829.
Wu, W.Q., Li, J., Wang, Q., Lv, K.W., Du, K., Zhang, W.L. et al. (2021) Growth‐regulating factor 5 (GRF5)‐mediated gene regulatory network promotes leaf growth and expansion in poplar. New Phytologist, 230, 612–628.
Xiao, H., Wang, Y., Liu, D.F., Wang, W.M., Li, X.B., Zhao, X.F. et al. (2003) Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Molecular Biology, 52, 957–966.
Xie, Z.P., Sundstroem, J.F., Jin, Y.K., Liu, C.L., Jansson, C. & Sun, C.X. (2014) A selection strategy in plant transformation based on antisense oligodeoxynucleotide inhibition. The Plant Journal, 77, 954–961.
Yan, J.P., Qiu, R.M., Wang, K.X., Liu, Y.R. & Zhang, W.J. (2023) Enhancing alfalfa resistance to Spodoptera herbivory by sequestering microRNA396 expression. Plant Cell Reports, 42, 805–819.
Yu, H.X., Xiao, A.F., Wu, J.S., Li, H.X., Duan, Y., Chen, Q.S. et al. (2023) GmNAC039 and GmNAC018 activate the expression of cysteine protease genes to promote soybean nodule senescence. The Plant Cell, 35, 2929–2951.
Yuan, H.R., Cheng, M.X., Wang, R.H., Wang, Z.K., Fan, F.F., Wang, W. et al. (2024) miR396b/GRF6 module contributes to salt tolerance in rice. Plant Biotechnology Journal, 22, 2079–2092.
Yuan, S.R., Zhao, J.M., Li, Z.G., Hu, Q., Yuan, N., Zhou, M. et al. (2019) MicroRNA396‐mediated alteration in plant development and salinity stress response in creeping bentgrass. Horticulture Research, 6, 48.
Zhang, H., Jia, S.G., Zhang, M.X., Wang, K.X., Teng, F.K., Liu, Y.R. et al. (2022) Deciphering the regulatory network of miR156 in plant architecture and abiotic stress resistance of alfalfa (Medicago sativa) by transcriptome sequencing. Industrial Crops and Products, 189, 115828.
Zhang, J.S., Zhou, Z.Y., Bai, J.J., Tao, X.P., Wang, L., Zhang, H. et al. (2020) Disruption of MIR396e and MIR396f improves rice yield under nitrogen‐deficient conditions. National Science Review, 7, 102–112.
Zhang, L.L., Huang, J.B., Su, S.Q., Wei, X.C., Yang, L., Zhao, H.H. et al. (2021) FERONIA receptor kinase‐regulated reactive oxygen species mediate self‐incompatibility in Brassica rapa. Current Biology, 31, 3004–3072.
Zhang, W.J. & Wang, T. (2015) Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation. Plant Science, 234, 110–118.
Zhou, S.X., Zhang, C.J., Huang, Y., Chen, H.F., Yuan, S.L. & Zhou, X.N. (2021) Characteristics and research progress of legume nodule senescence. Plants, 10, 1103.
0 (Reactive Oxygen Species)
0 (Plant Proteins)
0 (RNA, Plant)
EC 6.3.1.2 (Glutamate-Ammonia Ligase)
Weitere Informationen
The miR396-GRF module plays a vital role in the growth and development of plant organs. However, its function in the development of leguminous nodules remains unclear. Here, we observed significant upregulation of miR396b in alfalfa (Medicago sativa L.) senescent nodules, especially in the upper part of the nitrogen fixation region. Transgenic lines overexpressing or sequestering miR396b were generated to examine its role in nodule senescence. Here, we report that miR396b acts as a positive regulator in nodule senescence by affecting the accumulation of reactive oxygen species (ROS) in different regions of a nodule. Among the 10 miR396b-targeted MsGRFs, MsGRF1c showed the most significant transcriptional suppression by miR396b in nodules. By overexpressing rMsGRF1c (a synonymous mutation of MsGRF1c resistant to miR396b cleavage) and suppression of MsGRF1c activity via MsGRF1c-SRDX overexpression in alfalfa, we confirmed that MsGRF1c delayed nodule senescence by regulating ROS distribution and promoted alfalfa above-ground biomass yield after sinorhizobium inoculation. A glutamine synthetase gene (MsGS2), which showed differentially expressed in the RNA sequencing data, was markedly upregulated in the nodule senescent region and repressed by MsGRF1c. Then, MsGS2 was experimentally validated as a direct transcriptional target of MsGRF1c. Transient interference of MsGS2 expression in nodules via antisense oligodeoxynucleotide treatment proved its essential role in regulating ROS distribution and nitrogen fixation efficiency in alfalfa nodules. Our results shed light on the miR396b-MsGRF1c-MsGS2 pathway that plays a vital role in regulating alfalfa nodule senescence by affecting ROS distribution, and we propose an alternative way to create new alfalfa germplasm with enhanced nitrogen fixation capacity and biomass yield.
(© 2025 Society for Experimental Biology and John Wiley & Sons Ltd.)