Treffer: Development of a predictive score for prolonged pelvic operation time in robot-assisted low anterior resection: a single-center, retrospective study in Japan.

Title:
Development of a predictive score for prolonged pelvic operation time in robot-assisted low anterior resection: a single-center, retrospective study in Japan.
Authors:
Yao K; Division of Colon and Rectal Surgery, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan.; Department of Gastrointestinal Surgery, Institute of Science Tokyo, Tokyo, Japan., Kasai S; Division of Colon and Rectal Surgery, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan. s.kasai@scchr.jp.; Department of Gastrointestinal Surgery, Institute of Science Tokyo, Tokyo, Japan. s.kasai@scchr.jp., Shiomi A; Division of Colon and Rectal Surgery, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan., Manabe S; Division of Colon and Rectal Surgery, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan., Tanaka Y; Division of Colon and Rectal Surgery, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan., Kojima T; Division of Colon and Rectal Surgery, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan., Igaki T; Division of Colon and Rectal Surgery, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan.; Department of Gastrointestinal Surgery, Institute of Science Tokyo, Tokyo, Japan., Mori Y; Division of Colon and Rectal Surgery, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan., Notsu A; Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan., Kinugasa Y; Department of Gastrointestinal Surgery, Institute of Science Tokyo, Tokyo, Japan.
Source:
Surgical endoscopy [Surg Endosc] 2025 Nov; Vol. 39 (11), pp. 7525-7535. Date of Electronic Publication: 2025 Sep 08.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Springer Country of Publication: Germany NLM ID: 8806653 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2218 (Electronic) Linking ISSN: 09302794 NLM ISO Abbreviation: Surg Endosc Subsets: MEDLINE
Imprint Name(s):
Publication: 1992- : New York : Springer
Original Publication: [Berlin] : Springer International, c1987-
References:
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74:229–263. (PMID: 38572751)
Benson AB, Venook AP, Adam M, Chang G, Chen YJ, Ciombor KK, Cohen SA, Cooper HS, Deming D, Garrido-Laguna I, Grem JL, Haste P, Hecht JR, Hoffe S, Hunt S, Hussan H, Johung KL, Joseph N, Kirilcuk N, Krishnamurthi S, Malla M, Maratt JK, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Nurkin S, Parikh A, Patel H, Pedersen K, Saltz L, Schneider C, Shibata D, Shogan B, Skibber JM, Sofocleous CT, Tavakkoli A, Willett CG, Wu C, Jones F, Gurski L (2024) NCCN guidelines® insights: rectal cancer, version 3.2024. J Natl Compr Canc Netw 22:366–375. (PMID: 3915145410.6004/jnccn.2024.0041)
Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, Arnold D (2017) Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up 2020. Ann Oncol 28:iv22–iv40. (PMID: 2888192010.1093/annonc/mdx224)
Hashiguchi Y, Muro K, Saito Y, Ito Y, Ajioka Y, Hamaguchi T, Hasegawa K, Hotta K, Ishida H, Ishiguro M, Ishihara S, Kanemitsu Y, Kinugasa Y, Murofushi K, Nakajima TE, Oka S, Tanaka T, Taniguchi H, Tsuji A, Uehara K, Ueno H, Yamanaka T, Yamazaki K, Yoshida M, Yoshino T, Itabashi M, Sakamaki K, Sano K, Shimada Y, Tanaka S, Uetake H, Yamaguchi S, Yamaguchi N, Kobayashi H, Matsuda K, Kotake K, Sugihara K (2020) Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol 25:1–42. (PMID: 3120352710.1007/s10147-019-01485-z)
Pigazzi A, Ellenhorn JD, Ballantyne GH, Paz IB (2006) Robotic-assisted laparoscopic low anterior resection with total mesorectal excision for rectal cancer. Surg Endosc 20:1521–1525. (PMID: 1689728410.1007/s00464-005-0855-5)
Mohd Azman ZA, Kim S-H (2016) A review on robotic surgery in rectal cancer. Transl Gastroenterol Hepatol 1:5. (PMID: 28138573524465510.21037/tgh.2016.03.16)
Matsuyama T, Kinugasa Y, Nakajima Y, Kojima K (2018) Robotic-assisted surgery for rectal cancer: current state and future perspective. Ann Gastroenterol Surg 2:406–412. (PMID: 30460343623610610.1002/ags3.12202)
Feng Q, Yuan W, Li T, Tang B, Jia B, Zhou Y, Zhang W, Zhao R, Zhang C, Cheng L, Zhang X, Liang F, He G, Wei Y, Xu J (2022) Robotic versus laparoscopic surgery for middle and low rectal cancer (REAL): short-term outcomes of a multicentre randomised controlled trial. Lancet Gastroenterol Hepatol 7:991–1004. (PMID: 3608760810.1016/S2468-1253(22)00248-5)
Park JS, Lee SM, Choi GS, Park SY, Kim HJ, Song SH, Min BS, Kim NK, Kim SH, Lee KY (2023) Comparison of laparoscopic versus robot-assisted surgery for rectal cancers: the COLRAR randomized controlled trial. Ann Surg 278:31–38. (PMID: 3659474810.1097/SLA.0000000000005788)
Schootman M, Hendren S, Ratnapradipa K, Stringer L, Davidson NO (2016) Adoption of robotic technology for treating colorectal cancer. Dis Colon Rectum 59:1011–1018. (PMID: 27749475551089510.1097/DCR.0000000000000688)
Shiroshita H, Inomata M, Akira S, Kanayama H, Yamaguchi S, Eguchi S, Wada N, Kurokawa Y, Uchida H, Seki Y, Ieiri S, Iwazaki M, Sato Y, Kitamura K, Tabata M, Mimata H, Takahashi H, Uemura T, Akagi T, Taniguchi F, Miyajima A, Hashizume M, Matsumoto S, Kitano S, Watanabe M, Sakai Y (2022) Current status of endoscopic surgery in Japan: the 15th national survey of endoscopic surgery by the Japan Society for Endoscopic Surgery. Asian J Endosc Surg 15:415–426. (PMID: 3495490710.1111/ases.13012)
Kawada K, Sakai Y (2018) Can we predict surgical difficulty of rectal surgery? Ann Laparosc Endosc Surg 3:44. (PMID: 10.21037/ales.2018.04.09)
Shen X, Zhou C, Hua Q, Yang L, Zhao W, Xu P (2022) Impact of operation duration on short-term and long-term prognosis in patients undergoing radical colorectal surgery. J Cancer 13:1160–1167. (PMID: 35281851889938510.7150/jca.65817)
Targarona EM, Balague C, Pernas JC, Martinez C, Berindoague R, Gich I, Trias M (2008) Can we predict immediate outcome after laparoscopic rectal surgery? Multivariate analysis of clinical, anatomic, and pathologic features after 3-dimensional reconstruction of the pelvic anatomy. Ann Surg 247:642–649. (PMID: 1836262710.1097/SLA.0b013e3181612c6a)
Akiyoshi T, Kuroyanagi H, Oya M, Konishi T, Fukuda M, Fujimoto Y, Ueno M, Miyata S, Yamaguchi T (2009) Factors affecting the difficulty of laparoscopic total mesorectal excision with double stapling technique anastomosis for low rectal cancer. Surgery 146:483–489. (PMID: 1971580510.1016/j.surg.2009.03.030)
Yamaoka Y, Yamaguchi T, Kinugasa Y, Shiomi A, Kagawa H, Yamakawa Y, Furutani A, Manabe S, Torii K, Koido K, Mori K (2019) Mesorectal fat area as a useful predictor of the difficulty of robotic-assisted laparoscopic total mesorectal excision for rectal cancer. Surg Endosc 33:557–566. (PMID: 3000683810.1007/s00464-018-6331-9)
Yuval JB, Thompson HM, Fiasconaro M, Patil S, Wei IH, Pappou EP, Smith JJ, Guillem JG, Nash GM, Weiser MR, Paty PB, Garcia-Aguilar J, Widmar M (2022) Predictors of operative difficulty in robotic low anterior resection for rectal cancer. Colorectal Dis 24:1318–1324. (PMID: 35656853970115010.1111/codi.16212)
Shimada Y, Hamaguchi T, Mizusawa J, Saito N, Kanemitsu Y, Takiguchi N, Ohue M, Kato T, Takii Y, Sato T, Tomita N, Yamaguchi S, Akaike M, Mishima H, Kubo Y, Nakamura K, Fukuda H, Moriya Y (2014) Randomised phase III trial of adjuvant chemotherapy with oral uracil and tegafur plus leucovorin versus intravenous fluorouracil and levofolinate in patients with stage III colorectal cancer who have undergone Japanese D2/D3 lymph node dissection: final results of JCOG0205. Eur J Cancer 50:2231–2240. (PMID: 2495873610.1016/j.ejca.2014.05.025)
Hino H, Shiomi A, Kagawa H, Manabe S, Yamaoka Y, Kato S, Hanaoka M (2022) Neoadjuvant chemoradiotherapy for borderline resectable low rectal cancer: short- and long-term outcomes at a single Japanese center. Surg Today 52:1072–1080. (PMID: 3499733110.1007/s00595-021-02419-x)
Kasai S, Kagawa H, Shiomi A, Hino H, Manabe S, Yamaoka Y, Chen K, Nanishi K, Maeda C, Kinugasa Y (2023) Long-term outcomes of upfront robotic rectal cancer surgery: a single-center, retrospective cohort study in Japan. Surg Today 53:1028–1037. (PMID: 3675286610.1007/s00595-023-02648-2)
Shiomi A, Kinugasa Y, Yamaguchi T, Tomioka H, Kagawa H (2014) Robot-assisted rectal cancer surgery: short-term outcomes for 113 consecutive patients. Int J Colorectal Dis 29:1105–1111. (PMID: 2494249910.1007/s00384-014-1921-z)
Brierley JD, Gospodarowicz MK, Wittekind C (2017) TNM classification of malignant tumours, 8th edn. Wiley-Blackwell, Oxford.
McMillan DC, Crozier JE, Canna K, Angerson WJ, McArdle CS (2007) Evaluation of an inflammation-based prognostic score (GPS) in patients undergoing resection for colon and rectal cancer. Int J Colorectal Dis 22:881–886. (PMID: 1724556610.1007/s00384-006-0259-6)
Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213. (PMID: 15273542136012310.1097/01.sla.0000133083.54934.ae)
Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, de Santibañes E, Pekolj J, Slankamenac K, Bassi C, Graf R, Vonlanthen R, Padbury R, Cameron JL, Makuuchi M (2009) The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg 250:187–196. (PMID: 1963891210.1097/SLA.0b013e3181b13ca2)
Kusters M, Beets GL, van de Velde CJ, Beets-Tan RG, Marijnen CA, Rutten HJ, Putter H, Moriya Y (2009) A comparison between the treatment of low rectal cancer in Japan and the Netherlands, focusing on the patterns of local recurrence. Ann Surg 249:229–235. (PMID: 1921217510.1097/SLA.0b013e318190a664)
Strömblad CT, Baxter-King RG, Meisami A, Yee S-J, Levine MR, Ostrovsky A, Stein D, Iasonos A, Weiser MR, Garcia-Aguilar J, Abu-Rustum NR, Wilson RS (2021) Effect of a predictive model on planned surgical duration accuracy, patient wait time, and use of presurgical resources: a randomized clinical trial. JAMA Surg 156:315–321. (PMID: 33502448784157710.1001/jamasurg.2020.6361)
Escal L, Nougaret S, Guiu B, Bertrand MM, de Forges H, Tetreau R, Thézenas S, Rouanet P (2018) MRI-based score to predict surgical difficulty in patients with rectal cancer. Br J Surg 105:140–146. (PMID: 2908850410.1002/bjs.10642)
Yamamoto T, Kawada K, Kiyasu Y, Itatani Y, Mizuno R, Hida K, Sakai Y (2020) Prediction of surgical difficulty in minimally invasive surgery for rectal cancer by use of MRI pelvimetry. BJS Open 4:666–677. (PMID: 32342670739737310.1002/bjs5.50292)
Stuart J, Santos PMDd, Pereira CC, Martins SF (2024) Assessment of surgical difficulty in patients with rectal cancer—the impact of pelvimetry. Int J Transl Med 4:163–175.
Yu M, Yuan Z, Li R, Shi B, Wan D, Dong X (2024) Interpretable machine learning model to predict surgical difficulty in laparoscopic resection for rectal cancer. Front Oncol 14:1337219. (PMID: 383803691087841610.3389/fonc.2024.1337219)
Wang C, Xiao Y, Qiu H, Yao J, Pan W (2014) Factors affecting operating time in laparoscopic anterior resection of rectal cancer. World J Surg Oncol 12:44. (PMID: 24568575394169510.1186/1477-7819-12-44)
Chen W, Li Q, Fan Y, Li D, Jiang L, Qiu P, Tang L (2016) Factors predicting difficulty of laparoscopic low anterior resection for rectal cancer with total mesorectal excision and double stapling technique. PLoS ONE 11:e0151773. (PMID: 26992004479868910.1371/journal.pone.0151773)
Li X, Zhou Z, Zhu B, Wu Y, Xing C (2024) Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer. World J Surg Oncol 22:111. (PMID: 386648241104430310.1186/s12957-024-03389-3)
Fujimoto T, Tamura K, Nagayoshi K, Mizuuchi Y, Goto F, Matsuda H, Horioka K, Shindo K, Nakata K, Ohuchida K, Nakamura M (2024) Simple pelvimetry predicts the pelvic manipulation time in robot-assisted low and ultra-low anterior resection for rectal cancer. Surg Today 54:1184–1192. (PMID: 3854899910.1007/s00595-024-02820-2)
Han M, Guo S, Ma S, Zhou Q, Zhang W, Wang J, Zhuang J, Yao H, Yuan W, Lian Y (2024) Predictive model of the surgical difficulty of robot-assisted total mesorectal excision for rectal cancer: a multicenter, retrospective study. J Robot Surg 19:19. (PMID: 396482551162568710.1007/s11701-024-02180-6)
Lippenberger F, Ziegelmayer S, Berlet M, Feussner H, Makowski M, Neumann P-A, Graf M, Kaissis G, Wilhelm D, Braren R, Reischl S (2024) Development of an image-based random forest classifier for prediction of surgery duration of laparoscopic sigmoid resections. Int J Colorectal Dis 39:21. (PMID: 382730971081118010.1007/s00384-024-04593-z)
Yamaguchi T, Kinugasa Y, Shiomi A, Sato S, Yamakawa Y, Kagawa H, Tomioka H, Mori K (2015) Learning curve for robotic-assisted surgery for rectal cancer: use of the cumulative sum method. Surg Endosc 29:1679–1685. (PMID: 2527747710.1007/s00464-014-3855-5)
Jiménez-Rodríguez RM, Rubio-Dorado-Manzanares M, Díaz-Pavón JM, Reyes-Díaz ML, Vazquez-Monchul JM, Garcia-Cabrera AM, Padillo J, De la Portilla F (2016) Learning curve in robotic rectal cancer surgery: current state of affairs. Int J Colorectal Dis 31:1807–1815. (PMID: 2771451710.1007/s00384-016-2660-0)
Randell R, Honey S, Alvarado N, Greenhalgh J, Hindmarsh J, Pearman A, Jayne D, Gardner P, Gill A, Kotze A, Dowding D (2019) Factors supporting and constraining the implementation of robot-assisted surgery: a realist interview study. BMJ Open 9:e028635. (PMID: 31203248658901210.1136/bmjopen-2018-028635)
Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, Copeland J, Quirke P, West N, Rautio T, Thomassen N, Tilney H, Gudgeon M, Bianchi PP, Edlin R, Hulme C, Brown J (2017) Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. JAMA 318:1569–1580. (PMID: 29067426581880510.1001/jama.2017.7219)
Zhang Q, Wei J, Chen H (2023) Advances in pelvic imaging parameters predicting surgical difficulty in rectal cancer. World J Surg Oncol 21:64. (PMID: 36843078996964410.1186/s12957-023-02933-x)
Forrest LM, McMillan DC, McArdle CS, Angerson WJ, Dunlop DJ (2003) Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br J Cancer 89:1028–1030. (PMID: 12966420237696010.1038/sj.bjc.6601242)
Contributed Indexing:
Keywords: Operation time; Prediction model; Rectal cancer; Robot-assisted surgery
Entry Date(s):
Date Created: 20250908 Date Completed: 20251115 Latest Revision: 20251115
Update Code:
20251115
DOI:
10.1007/s00464-025-12122-4
PMID:
40921835
Database:
MEDLINE

Weitere Informationen

Background: Robot-assisted surgery has been widely adopted for the treatment of rectal cancer. Preoperative identification of difficult cases is essential, particularly for surgical training and operating room management. This study aimed to identify preoperative risk factors and develop a predictive scoring system for prolonged pelvic operation time in robot-assisted low anterior resection.
Methods: This retrospective, single-center study included patients who underwent robot-assisted low anterior resection for primary rectal cancer performed by experienced surgeons between 2019 and 2024. Preoperative clinicopathological features were evaluated using multivariate analysis to identify associations with longer pelvic operation time. A novel predictive scoring system for prolonged pelvic operation time was developed in a training cohort using the identified clinicopathological risk factors, and internally validated.
Results: A total of 343 patients were analyzed, with a median pelvic operation time of 87 min. Multivariate analysis identified eight risk factors: male sex, high body mass index, tumor distance from the anal verge < 7 cm, clinical T4 stage, clinically positive lymph nodes, history of preoperative chemoradiotherapy, elevated C-reactive protein levels, and low serum albumin. The predictive scoring system, based on a logistic regression model incorporating the eight factors, demonstrated robust performance in the validation cohort, with an area under the curve of 0.88 and a negative predictive value of 0.95. Stratification into four risk categories effectively distinguished both pelvic and total operation times.
Conclusion: Eight preoperative clinicopathological features were identified as independent risk factors for prolonged pelvic operation time in robot-assisted rectal cancer surgery. The developed predictive scoring system, which can be readily applied preoperatively, may aid in case selection for surgical training and enhance operating room management.
(© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Declarations. Disclosures: Dr.Kenta Yao, Dr. Shunsuke Kasai, Dr. Shoichi Manabe, Dr. Akio Shiomi, Dr.Yusuke Tanaka, Dr. Tadahiro Kojima, Dr.Takahiro Igaki, Dr. Yukihiro Mori and Dr. Akifumi Notsu have no conflicts of interest or financial ties to disclose. Dr.Yusuke Kinugasa received speaker honoraria from Intuitive Surgical, Inc.