Treffer: Use of image-guided robotic-assisted drilling for transcondylar screw placement in the canine humerus.
Original Publication: Philadelphia : Lippincott.
Hip Pelvis. 2017 Mar;29(1):1-14. (PMID: 28316957)
Vet Surg. 2005 Jul-Aug;34(4):324-31. (PMID: 16212586)
Vet Surg. 2020 Feb;49(2):363-372. (PMID: 31713891)
BDJ Open. 2024 Jun 3;10(1):43. (PMID: 38830840)
Vet Surg. 2019 Apr;48(3):299-308. (PMID: 30666675)
J Endourol. 2015 Jan;29(1):63-9. (PMID: 25000418)
Vet Rec. 2021 Dec;189(11):e504. (PMID: 34021603)
Vet Surg. 2023 Jul;52(5):674-685. (PMID: 37114865)
Vet Surg. 2014 Nov;43(8):1020-31. (PMID: 24467631)
J Am Anim Hosp Assoc. 2017 Jan/Feb;53(1):45-51. (PMID: 27841683)
J Biomed Inform. 2015 Jun;55:124-31. (PMID: 25882923)
Urology. 2008 May;71(5):971-3. (PMID: 18295861)
EFORT Open Rev. 2019 Nov 1;4(11):618-625. (PMID: 31754468)
EFORT Open Rev. 2020 Dec 4;5(12):866-873. (PMID: 33425375)
Eur Urol Focus. 2021 Mar;7(2):444-452. (PMID: 32169362)
Vet Comp Orthop Traumatol. 2008;21(5):400-5. (PMID: 19011702)
Vet Surg. 2020 Oct;49(7):1458-1466. (PMID: 32885840)
Vet Rec. 2020 May 2;186(15):490. (PMID: 31413118)
PLoS One. 2022 Aug 1;17(8):e0272336. (PMID: 35913954)
Vet Surg. 2026 Jan;55(1):225-235. (PMID: 40913298)
J Small Anim Pract. 2021 Oct;62(10):895-902. (PMID: 33987843)
Vet Comp Orthop Traumatol. 2025 Sep;38(5):214-220. (PMID: 39933720)
Vet Clin North Am Small Anim Pract. 2021 Mar;51(2):421-437. (PMID: 33446360)
Vet Surg. 2024 Feb;53(2):234-242. (PMID: 37309843)
Vet Surg. 2021 Oct;50(7):1443-1448. (PMID: 34382699)
J Spine Surg. 2021 Sep;7(3):326-334. (PMID: 34734137)
J Clin Med. 2022 Nov 30;11(23):. (PMID: 36498666)
Global Spine J. 2021 May;11(4):575-586. (PMID: 32677515)
Vet Surg. 2021 Aug;50(6):1218-1226. (PMID: 34076290)
Vet Surg. 2016 Jan;45(1):52-9. (PMID: 26731596)
Vet Surg. 2024 Feb;53(2):264-276. (PMID: 37435744)
Weitere Informationen
Objective: To determine if a novel robotic system has comparable positional and angular accuracy to that achievable with patient-specific guides (PSG) when used for transcondylar screw (TCS) placement in the canine humerus.
Study Design: Experimental laboratory study.
Sample Population: A total of 32 synthetic humeral models (16 per group).
Methods: Bone models were three-dimensional (3D)-printed and drilled with the aid of a custom PSG or with the assistance of an image-guided surgical robot. A 2.5-mm hole was drilled medial to lateral and the entry point, exit point and angular trajectory of the drill hole were measured on postoperative computed tomography (CT) scans. Absolute differences between planned and actual positions and trajectories were compared between PSG and Robot groups.
Results: None of the drill holes in this study violated the articular surface of the humerus. Entry point positioning was significantly more accurate in the PSG group, but drill hole trajectories (angulation) were more accurate in the Robot group. Exit point positioning was similar in the two groups.
Conclusion: Robotic assistance enables safe placement of drill holes for TCS. PSG enable more accurate drill entry, but robotic assistance allows for more accurate overall drill hole trajectory.
Clinical Significance: Robotic assistance allows for accurate and safe drilling of screw holes for TCS placement in the humerus. The robotic procedure allows for a more limited surgical exposure, but the technical feasibility and outcomes associated with this approach should now be evaluated in cadavers before moving to clinical evaluation in live patients.
(© 2025 The Author(s). Veterinary Surgery published by Wiley Periodicals LLC on behalf of American College of Veterinary Surgeons.)