Treffer: Mixed effect gradient boosting for high-dimensional longitudinal data.

Title:
Mixed effect gradient boosting for high-dimensional longitudinal data.
Authors:
Olaniran OR; Department of Statistics, Faculty of Physical Sciences, University of Ilorin, Ilorin, Kwara State, PMB 1515, Nigeria. olaniran.or@unilorin.edu.ng.; Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom. olaniran.or@unilorin.edu.ng., Olaniran SF; Department of Statistics and Mathematical Sciences, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Kwara State, PMB 1530, Nigeria., Allohibi J; Department of Mathematics, Taibah University, Faculty of Science, Al-Munawara, 42353, Saudi Arabia., Alharbi AA; Department of Mathematics, Taibah University, Faculty of Science, Al-Munawara, 42353, Saudi Arabia., Alharbi NM; Department of Mathematics, Taibah University, Faculty of Science, Al-Munawara, 42353, Saudi Arabia.
Source:
Scientific reports [Sci Rep] 2025 Aug 22; Vol. 15 (1), pp. 30927. Date of Electronic Publication: 2025 Aug 22.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
Reproduction. 2006 Aug;132(2):217-32. (PMID: 16885531)
Annu Rev Pathol. 2019 Jan 24;14:185-210. (PMID: 30183507)
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7361-6. (PMID: 24799715)
Int J Dev Biol. 2014;58(2-4):273-80. (PMID: 25023693)
J Am Stat Assoc. 2015;110(512):1770-1784. (PMID: 26903687)
Sci Rep. 2025 Aug 22;15(1):30927. (PMID: 40847064)
Biometrics. 1982 Dec;38(4):963-74. (PMID: 7168798)
J Med Genet. 2008 Jul;45(7):473-8. (PMID: 18593870)
Stat Methods Med Res. 2021 Jan;30(1):166-184. (PMID: 32772626)
Res Nurs Health. 2012 Dec;35(6):647-58. (PMID: 22911221)
Arterioscler Thromb Vasc Biol. 2001 Mar;21(3):335-41. (PMID: 11231911)
Biochimie. 2018 May;148:12-17. (PMID: 29474975)
Contributed Indexing:
Keywords: Gradient Boosting; High-dimensional Data; Longitudinal Data; Mixed Effect Model
Substance Nomenclature:
63231-63-0 (RNA)
Entry Date(s):
Date Created: 20250822 Date Completed: 20250823 Latest Revision: 20250902
Update Code:
20250903
PubMed Central ID:
PMC12373843
DOI:
10.1038/s41598-025-16526-z
PMID:
40847064
Database:
MEDLINE

Weitere Informationen

High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting's inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes INLINEMATH . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data INLINEMATH subjects, INLINEMATH transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
(© 2025. The Author(s).)

Declarations. Competing interests: The authors declare no competing interests.