Treffer: XGBoost models based on non imaging features for the prediction of mild cognitive impairment in older adults.

Title:
XGBoost models based on non imaging features for the prediction of mild cognitive impairment in older adults.
Authors:
Fernández-Blázquez MA; Department of Biological and Health Psychology, School of Psychology, Universidad Autónoma de Madrid, C/ Iván Pavlov, 6, Madrid, 28049, Spain. miguelangel.fernandezb@uam.es., Ruiz-Sánchez de León JM; Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain., Sanz-Blasco R; Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain., Verche E; Department of Psychobiology and Methodology in Behavioural Sciences, Universidad Complutense de Madrid, Madrid, Spain., Ávila-Villanueva M; Department of Biological and Health Psychology, School of Psychology, Universidad Autónoma de Madrid, C/ Iván Pavlov, 6, Madrid, 28049, Spain., Gil-Moreno MJ; Health Research Institute of the San Carlos Clinic Hospital (IdISSC), Madrid, Spain.; Neurology Department, Hospital Clínico San Carlos, Madrid, Spain., Montenegro-Peña M; Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain.; Centre for the Prevention of Cognitive Impairment, Madrid Salud, Madrid City Council, Madrid, Spain., Terrón C; Nuestra Señora del Rosario University Hospital, Madrid, Spain.; Sanitas La Zarzuela University Hospital, Madrid, Spain., Fernández-García C; Cognitive Impairment Unit, Neurology Service, Sanitas La Moraleja University Hospital, Madrid, Spain., Gómez-Ramírez J; Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain.
Source:
Scientific reports [Sci Rep] 2025 Aug 13; Vol. 15 (1), pp. 29732. Date of Electronic Publication: 2025 Aug 13.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
J Psychiatr Res. 1975 Nov;12(3):189-98. (PMID: 1202204)
Nat Rev Neurol. 2010 Jun;6(6):318-26. (PMID: 20498679)
J Clin Neuropsychol. 1984 Nov;6(4):433-40. (PMID: 6501581)
Alzheimers Res Ther. 2022 Aug 3;14(1):107. (PMID: 35922851)
Ann Med. 2001 Jul;33(5):337-43. (PMID: 11491192)
Neuropsychol Rev. 2017 Dec;27(4):328-353. (PMID: 29019061)
Neurology. 2009 Jul 21;73(3):173-9. (PMID: 19439724)
Am J Geriatr Psychiatry. 2008 Sep;16(9):781-5. (PMID: 18757771)
J Psychiatr Res. 1982-1983;17(1):37-49. (PMID: 7183759)
Sci Rep. 2020 Nov 26;10(1):20630. (PMID: 33244011)
Alzheimers Dement. 2023 Apr;19(4):1598-1695. (PMID: 36918389)
Alzheimers Dement. 2022 Jun;18(6):1177-1185. (PMID: 34482637)
Arch Gen Psychiatry. 2011 Sep;68(9):961-9. (PMID: 21893661)
PLoS One. 2019 Jul 5;14(7):e0203246. (PMID: 31276468)
Alzheimers Dement. 2011 May;7(3):270-9. (PMID: 21514249)
Alzheimers Dement. 2012 Jul;8(4):312-36. (PMID: 22748938)
PLoS One. 2021 May 17;16(5):e0251796. (PMID: 33999936)
Lancet Diabetes Endocrinol. 2013 Nov;1(3):183-90. (PMID: 24622366)
Am J Geriatr Psychiatry. 2011 Jul;19(7):673-7. (PMID: 21709613)
Lancet. 2024 Aug 10;404(10452):572-628. (PMID: 39096926)
BMC Bioinformatics. 2011 Mar 17;12:77. (PMID: 21414208)
Lancet. 2017 Dec 16;390(10113):2673-2734. (PMID: 28735855)
Age Ageing. 2012 Jan;41(1):125-8. (PMID: 21930529)
Front Aging Neurosci. 2022 Aug 29;14:945274. (PMID: 36092811)
J Prev Alzheimers Dis. 2021;8(3):371-386. (PMID: 34101796)
Contributed Indexing:
Keywords: Aging; Dementia; Early diagnosis; Machine learning; Mil cognitive impairment; XGBoost
Entry Date(s):
Date Created: 20250813 Date Completed: 20250826 Latest Revision: 20250827
Update Code:
20250827
PubMed Central ID:
PMC12350651
DOI:
10.1038/s41598-025-14832-0
PMID:
40804281
Database:
MEDLINE

Weitere Informationen

The global increase in dementia cases highlights the importance of early detection and intervention, particularly for individuals at risk of mild cognitive impairment (MCI), a precursor to dementia. The aim of this study is to develop and validate machine learning (ML) models based on non-imaging features to predict the risk of MCI conversion in cognitively healthy older adults over a three-year period. Using data from 845 participants aged 65 to 87 years, we built five eXtreme Gradient Boosting (XGBoost) models of increasing complexity, incorporating demographic, self-reported, medical, and cognitive variables. The models were trained and evaluated using robust preprocessing techniques, including multiple imputation for missing data, Synthetic Minority Oversampling Technique (SMOTE) for class balancing, and SHapley Additive exPlanations (SHAP) for interpretability. Model performance improved with the inclusion of cognitive assessments, with the most comprehensive model (Model 5) achieving the highest accuracy (86%) and area under the curve (AUC = 0.8359). Feature importance analysis revealed that variables such as memory tests, depressive symptoms, and age were significant predictors of MCI conversion. In addition, an online risk calculator has been developed and made available free of charge to facilitate clinical use and provide a practical, cost-effective tool for early detection in diverse healthcare settings ( https://aimar-project.shinyapps.io/MCI-risk-calculator/ ). This study highlights the potential of non-imaging ML models for early detection of MCI and emphasizes their accessibility and clinical utility. Future research should focus on validating these models in different populations and examining their integration with personalized intervention strategies to reduce dementia risk.
(© 2025. The Author(s).)

Declarations. Competing interests: The authors declare no competing interests.