Treffer: Utilizing statistical analysis for motion imagination classification in brain-computer interface systems.

Title:
Utilizing statistical analysis for motion imagination classification in brain-computer interface systems.
Authors:
Li Y; College of Physical Education, Changchun Normal University, Changchun, Ji Lin, China., Zhang J; College of Physical Education, Changchun Normal University, Changchun, Ji Lin, China.
Source:
PloS one [PLoS One] 2025 Jul 08; Vol. 20 (7), pp. e0327121. Date of Electronic Publication: 2025 Jul 08 (Print Publication: 2025).
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
References:
IEEE Trans Neural Syst Rehabil Eng. 2020 May;28(5):1117-1127. (PMID: 32286993)
IEEE Trans Biomed Eng. 2011 Feb;58(2):355-62. (PMID: 20889426)
Gigascience. 2019 May 1;8(5):. (PMID: 30698704)
Analyst. 2010 Feb;135(2):230-67. (PMID: 20098757)
PLoS One. 2015 Dec 01;10(12):e0143962. (PMID: 26625261)
ISRN Neurosci. 2014 Feb 13;2014:730218. (PMID: 24967316)
Front Hum Neurosci. 2024 Jul 10;18:1421922. (PMID: 39050382)
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301. (PMID: 11607165)
Comput Methods Programs Biomed. 2021 Aug;207:106150. (PMID: 34034032)
Comput Biol Med. 2022 Jun;145:105437. (PMID: 35339096)
Sensors (Basel). 2022 Apr 26;22(9):. (PMID: 35591021)
Math Biosci Eng. 2023 Jan;20(3):4560-4573. (PMID: 36896512)
Comput Math Methods Med. 2018 Mar 18;2018:9871603. (PMID: 29743934)
IEEE J Biomed Health Inform. 2024 Dec;28(12):7126-7137. (PMID: 39190517)
PLoS One. 2020 Mar 17;15(3):e0230184. (PMID: 32182270)
IEEE Trans Biomed Eng. 2012 Sep;59(9):2496-505. (PMID: 22736634)
IEEE Trans Cybern. 2023 May;53(5):3128-3138. (PMID: 35417368)
Methods Enzymol. 2004;384:172-84. (PMID: 15081687)
Neural Netw. 2000 May-Jun;13(4-5):411-30. (PMID: 10946390)
IEEE Trans Biomed Eng. 2020 Feb;67(2):399-410. (PMID: 31034407)
Front Hum Neurosci. 2014 May 22;8:328. (PMID: 24904368)
J Neural Eng. 2022 Sep 30;19(5):. (PMID: 36126643)
J Neurosci Methods. 2022 Mar 15;370:109489. (PMID: 35090904)
IEEE J Biomed Health Inform. 2023 Jan;27(1):296-307. (PMID: 36315544)
Front Neurosci. 2012 Mar 29;6:39. (PMID: 22479236)
Entry Date(s):
Date Created: 20250708 Date Completed: 20250708 Latest Revision: 20250710
Update Code:
20250710
PubMed Central ID:
PMC12237276
DOI:
10.1371/journal.pone.0327121
PMID:
40627787
Database:
MEDLINE

Weitere Informationen

In this study, we introduce a novel Field-Agnostic Riemannian-Kernel Alignment (FARKA) method to advance the classification of motion imagination in Brain-Computer Interface (BCI) systems. BCI systems enable direct control of external devices through brain activity, bypassing peripheral nerves and muscles. Among various BCI technologies, electroencephalography (EEG) based on non-intrusive cortical potential signals stands out due to its high temporal resolution and non-invasive nature. EEG-based BCI technology encodes human brain intentions into cortical potentials, which are recorded and decoded into control commands. This technology is crucial for applications in motion rehabilitation, training optimization, and motion control. The proposed FARKA method combines Riemannian Alignment for sample alignment, Riemannian Tangent Space for spatial representation extraction, and Knowledge Kernel Adaptation to learn field-agnostic kernel matrices. Our approach addresses the limitations of current methods by enhancing classification performance and efficiency in inter-individual MI tasks. Experimental results on three public EEG datasets demonstrate the superior performance of FARKA compared to existing methods.
(Copyright: © 2025 Li, Zhang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

The authors have declared that no competing interests exist.