Treffer: An innovative ensemble approach of deep learning models with soft computing techniques for GIS-based drought-zonation mapping in Rarh Region, West Bengal.

Title:
An innovative ensemble approach of deep learning models with soft computing techniques for GIS-based drought-zonation mapping in Rarh Region, West Bengal.
Authors:
Chowdhury G; Department of Geography, Delhi School of Economics, University of Delhi, Delhi, India. gopalchowdhury989@gmail.com., Mandal S; Department of Geography, Delhi School of Economics, University of Delhi, Delhi, India., Saha AK; Department of Geography, Delhi School of Economics, University of Delhi, Delhi, India.
Source:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2025 Jun; Vol. 32 (27), pp. 16295-16323. Date of Electronic Publication: 2025 Jun 25.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
References:
Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10. https://doi.org/10.1007/s12517-017-2980-6.
Agana NA, Homaifar A (2017) A deep learning based approach for long-term drought prediction. Conf Proc - IEEE SOUTHEASTCON 1–8. https://doi.org/10.1109/SECON.2017.7925314.
Ali M, Ghaith M, Wagdy A, Helmi AM (2022) Development of a new multivariate composite drought index for the Blue Nile River basin. Water (Switzerland) 14:1–24. https://doi.org/10.3390/w14060886. (PMID: 10.3390/w14060886)
An N, Ding H, Yang J, Au R, Ang TFA (2020) Deep ensemble learning for Alzheimer’s disease classification. J Biomed Inform 105:103411. https://doi.org/10.1016/j.jbi.2020.103411. (PMID: 10.1016/j.jbi.2020.103411)
Aslam B, Zafar A, Khalil U (2023) Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping. Springer, Netherlands.
Banerjee A, Bera S (2021) GIS-based assessment for agricultural susceptibility and sustainability to meteorological drought in West Bengal. Mod Cartogr Ser 10:265–284. https://doi.org/10.1016/B978-0-12-823895-0.00010-5. (PMID: 10.1016/B978-0-12-823895-0.00010-5)
Bera B, Shit PK, Sengupta N, Saha S, Bhattacharjee S (2022) Steady declining trend of groundwater table and severe water crisis in unconfined hard rock aquifers in extended part of Chota Nagpur Plateau, India. Appl Water Sci 12:1–19. https://doi.org/10.1007/s13201-021-01550-x. (PMID: 10.1007/s13201-021-01550-x)
Bhunia P, Das P, Maiti R (2020) Meteorological drought study through SPI in three drought prone districts of West Bengal, India. Earth Syst Environ 4:43–55. https://doi.org/10.1007/s41748-019-00137-6. (PMID: 10.1007/s41748-019-00137-6)
Brill F, Alencar PHL, Zhang H, Boeing F, Hüttel S, Lakes T (2024) Exploring drought hazard, vulnerability, and related impacts on agriculture in Brandenburg. Nat Hazards Earth Syst Sci 24:4237–4265. https://doi.org/10.5194/nhess-24-4237-2024. (PMID: 10.5194/nhess-24-4237-2024)
Bui DT, Pham BT, Nguyen QP, Hoang N (2016) Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization : a case study in Central Vietnam Spatial prediction of rainfall-induced shallow l. 8947. https://doi.org/10.1080/17538947.2016.1169561.
Cai S, Song X, Hu R, Leng P, Li X, Guo D, Zang Y, Hao Y, Wang Y (2021) Spatiotemporal characteristics of agricultural droughts based on soil moisture data in Inner Mongolia from 1981 to 2019. J Hydrol 603:127104. https://doi.org/10.1016/j.jhydrol.2021.127104. (PMID: 10.1016/j.jhydrol.2021.127104)
Chakrabarty P, Mandal R (2018) Geoarchaeosites for geotourism: a spatial analysis for Rarh Bengal in India. Geoj Tour Geosites 25:543–554. https://doi.org/10.30892/gtg.25221-379. (PMID: 10.30892/gtg.25221-379)
Chen W, Shahabi H, Shirzadi A, Li T, Guo C, Hong H, Li W, Pan D, Hui J, Ma M, Xi M, Ahmad BB (2018) A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto Int 33:1398–1420. https://doi.org/10.1080/10106049.2018.1425738. (PMID: 10.1080/10106049.2018.1425738)
Chen J, Zhao F, Sun Y, Yin Y (2020) Improved XGBoost model based on genetic algorithm. Int J Comput Appl Technol 62:240–245. https://doi.org/10.1504/IJCAT.2020.106571. (PMID: 10.1504/IJCAT.2020.106571)
Davenport MA, Kreiter A, Brauman KA, Keeler B, Arbuckle J, Sharma V, Pradhananga A, Noe R (2022) An experiential model of drought risk and future irrigation behaviors among central Minnesota farmers. Clim Change 171:1–16. https://doi.org/10.1007/s10584-022-03320-3. (PMID: 10.1007/s10584-022-03320-3)
Deb P, Moradkhani H, Han X, Abbaszadeh P, Xu L (2022) Assessing irrigation mitigating drought impacts on crop yields with an integrated modeling framework. J Hydrol 609:127760. https://doi.org/10.1016/j.jhydrol.2022.127760. (PMID: 10.1016/j.jhydrol.2022.127760)
Debnath M, Kumar Nayak D (2022) Rural out-migration as a coping strategy in the drought-prone areas of Rarh region of Eastern India. Int Migr 60:209–227. https://doi.org/10.1111/imig.12908. (PMID: 10.1111/imig.12908)
Dikshit A, Pradhan B, Huete A, Park HJ (2022) Spatial based drought assessment: where are we heading? A review on the current status and future. Sci Total Environ 844:157239. https://doi.org/10.1016/j.scitotenv.2022.157239. (PMID: 10.1016/j.scitotenv.2022.157239)
District Statistical Handbook (2014) Jhargram, Purba Medinipur and Paschim Medinipur. Bureau of applied economics & statistics, Government of West Bengal.
District Statistical Handbook (2015) Bankura, Birbhum and Paschim Bardhhaman. Bureau of applied economics & statistics, Government of West Bengal.
District Statistical Handbook (2016) Puruliya. Bureau of applied economics & statistics, Government of West Bengal.
District Statistical Handbook (2019) Purba Bardhhaman. Bureau of applied economics & statistics, Government of West Bengal.
Dong G, Zhang H, Moise A, Hanson L, Liang P, Ye H (2016) CMIP5 model-simulated onset, duration and intensity of the Asian summer monsoon in current and future climate. Clim Dyn 46:355–382. https://doi.org/10.1007/s00382-015-2588-z. (PMID: 10.1007/s00382-015-2588-z)
Ghorbanzadeh O, Shahabi H, Mirchooli F, Kamran KV, Lim S, Aryal J, Jarihani B, Blaschke T (2020) Gully erosion susceptibility mapping (GESM) using machine learning methods optimized by the multi-collinearity analysis and K-fold cross-validation. Geomatics, Nat Hazards Risk 11:1653–1678. https://doi.org/10.1080/19475705.2020.1810138. (PMID: 10.1080/19475705.2020.1810138)
Ghosh KG (2019) Spatial and temporal appraisal of drought jeopardy over the Gangetic West Bengal, eastern India. Geoenviron Disast 6:1–21. https://doi.org/10.1186/s40677-018-0117-1. (PMID: 10.1186/s40677-018-0117-1)
Goswami T, Hasan MS, Ghosal S (2022) Site suitability of emerging maize cultivation in a changing agroclimatic setting of eastern India: a fuzzy-MCE integrated analysis. Springer, Netherlands.
Gudiyangada Nachappa T, Tavakkoli Piralilou S, Gholamnia K, Ghorbanzadeh O, Rahmatic O, Blaschke T (2020) Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol 590:125275. https://doi.org/10.1016/j.jhydrol.2020.125275. (PMID: 10.1016/j.jhydrol.2020.125275)
Habibi A, Delavar MR, Sadeghian MS, Nazari B, Pirasteh S (2023) A hybrid of ensemble machine learning models with RFE and Boruta wrapper-based algorithms for flash flood susceptibility assessment. Int J Appl Earth Obs Geoinf 122:103401. https://doi.org/10.1016/j.jag.2023.103401. (PMID: 10.1016/j.jag.2023.103401)
Hasan N, Bao Y, Shawon A, Huang Y (2021) DenseNet convolutional neural networks application for predicting COVID-19 using CT image. SN Comput Sci 2:389. https://doi.org/10.1007/s42979-021-00782-7. (PMID: 10.1007/s42979-021-00782-7)
Hazarika A, Nath AJ, Pandey R, Pebam R, Devi NB, Das AK (2024) Climate change vulnerability of tribe managing Piper agroforestry systems in the Indian sub-Himalayan region. Agric Syst 216:103914. https://doi.org/10.1016/j.agsy.2024.103914. (PMID: 10.1016/j.agsy.2024.103914)
Herrera-Estrada JE, Satoh Y, Sheffield J (2017) Spatiotemporal dynamics of global drought. Adv EARTH Sp Sci 2254–2263.  https://doi.org/10.1002/2016GL071768.
Hoque MAA, Pradhan B, Ahmed N (2020) Assessing drought vulnerability using geospatial techniques in northwestern part of Bangladesh. Sci Total Environ 705:135957. https://doi.org/10.1016/j.scitotenv.2019.135957. (PMID: 10.1016/j.scitotenv.2019.135957)
Huang Z, Zhu X, Ding M, Zhang X (2020) Medical image classification using a light-weighted hybrid neural network based on PCANet and DenseNet. IEEE Access 8:24697–24712. https://doi.org/10.1109/ACCESS.2020.2971225. (PMID: 10.1109/ACCESS.2020.2971225)
Huang Z, Liu X, Sun S, Tang Y, Yuan X, Tang Q (2021) Global assessment of future sectoral water scarcity under adaptive inner-basin water allocation measures. Sci Total Environ 783:146973. https://doi.org/10.1016/j.scitotenv.2021.146973. (PMID: 10.1016/j.scitotenv.2021.146973)
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferriera LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213. https://doi.org/10.1016/S0034-4257(02)00096-2.
IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Quin D, Manning M, Chen X, Marquis M,Averyt KB, Tignor HL, Miller M (eds) Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–996.
Jacobs L, Dewitte O, Poesen J, Sekajugo J, Nobile A, Rossi M, Thiery W, Kervyn M (2018) Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains. Nat Hazards Earth Syst Sci 18:105–124. https://doi.org/10.5194/nhess-18-105-2018. (PMID: 10.5194/nhess-18-105-2018)
Jin B, Zeng T, Yin K, Gui L, Guo Z, Wang T (2024) Dynamic landslide susceptibility mapping based on the PS-InSAR deformation intensity. Environ Sci Pollut Res 31:7872–7888. https://doi.org/10.1007/s11356-023-31688-x. (PMID: 10.1007/s11356-023-31688-x)
Karimi D, Bahrami J, Mobaraki J, Missimer TM, Taheri K (2022) Groundwater sustainability assessment based on socio-economic and environmental variables: a simple dynamic indicator-based approach. Hydrogeol J 30:1963–1988. https://doi.org/10.1007/s10040-022-02512-6. (PMID: 10.1007/s10040-022-02512-6)
Karstoft KI, Nielsen T, Nielsen ABS (2021) Measuring social support among soldiers with the experienced post-deployment social support scale (EPSSS): a rasch-based construct validity study. Behav Med 47:131–139. https://doi.org/10.1080/08964289.2019.1676192. (PMID: 10.1080/08964289.2019.1676192)
Kaur A, Sood SK (2020) Deep learning based drought assessment and prediction framework. Ecol Inform 57:101067. https://doi.org/10.1016/j.ecoinf.2020.101067. (PMID: 10.1016/j.ecoinf.2020.101067)
Kendall MG (1975) Rank correlation methods. London, UK Charles Griffin.
Kim D, Heo B, Han D (2024) DenseNets reloaded: paradigm shift beyond ResNets and ViTs. 1–14. https://doi.org/10.1007/978-3-031-72646-0_23.
Kumar PV, Osman M, Mishra PK (2019) Development and application of a new drought severity index for categorizing drought-prone areas: a case study of undivided Andhra Pradesh state, India. Nat Hazards 97:793–812. https://doi.org/10.1007/s11069-019-03675-4. (PMID: 10.1007/s11069-019-03675-4)
Lan Y, Chawade A, Kuktaite R, Johansson E (2022) Climate change impact on wheat performance—effects on vigour, plant traits and yield from early and late drought stress in diverse lines. Int J Mol Sci 23. https://doi.org/10.3390/ijms23063333.
Li YJ, Zheng XD, Lu F, Ma J (2012) Analysis of drought evolvement characteristics based on standardized precipitation index in the Huaihe River Basin. Procedia Eng 28:434–437. https://doi.org/10.1016/j.proeng.2012.01.746. (PMID: 10.1016/j.proeng.2012.01.746)
Li Y, Huang Y, Li Y, Zhang H, Fan J, Deng Q, Wang X (2024) Spatiotemporal heterogeneity in meteorological and hydrological drought patterns and propagations influenced by climatic variability, LULC change, and human regulations. Sci Rep 14:1–18. https://doi.org/10.1038/s41598-024-56526-z. (PMID: 10.1038/s41598-024-56526-z)
Luo XJ, Oyedele LO, Ajayi AO, Akinade OO, Delgado JMD, Owolabi HA, Ahmed A (2020) Genetic algorithm-determined deep feedforward neural network architecture for predicting electricity consumption in real buildings. Energy AI 2:100015. https://doi.org/10.1016/j.egyai.2020.100015. (PMID: 10.1016/j.egyai.2020.100015)
Luo J, Zhao Z, Pang J (2025) Spatiotemporal characteristics and dynamic prediction of agricultural carbon compensation potential in the middle and lower reaches of the Yellow River Basin. Environ Sci Pollut Res 1903–1917. https://doi.org/10.1007/s11356-024-35847-6.
Mahato MK, Jana NC (2021) Exploring the potential for development of geotourism in Rarh Bengal, Eastern India using M-GAM. Int J Geoheritage Park 9:313–322. https://doi.org/10.1016/j.ijgeop.2021.05.002. (PMID: 10.1016/j.ijgeop.2021.05.002)
Mandal K, Saha S, Mandal S (2021a) Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya. India Geosci Front 12:101203. https://doi.org/10.1016/j.gsf.2021.101203. (PMID: 10.1016/j.gsf.2021.101203)
Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259. https://doi.org/10.2307/1907187.
Mandal P, Saha J, Bhattacharya S, Paul S (2021b) Delineation of groundwater potential zones using the integration of geospatial and MIF techniques: a case study on Rarh region of West Bengal. India Environ Challenges 5:100396. https://doi.org/10.1016/j.envc.2021.100396. (PMID: 10.1016/j.envc.2021.100396)
Markoulidakis I, Markoulidakis G (2024) Probabilistic confusion matrix: a novel method for machine learning algorithm generalized performance analysis. Technologies 12. https://doi.org/10.3390/technologies12070113.
Masroor M, Sajjad H, Rehman S, Singh R, Rahaman MH, Sahana M, Ahmed R, Avtar R (2022) Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India. Geosci Front 13:101312. https://doi.org/10.1016/j.gsf.2021.101312. (PMID: 10.1016/j.gsf.2021.101312)
McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, pp 179–184.
Mohsin M, Pilz J (2021) Stochastic model for drought analysis of the Colorado River basin. Stoch Environ Res Risk Assess 35:1637–1648. https://doi.org/10.1007/s00477-021-01989-z. (PMID: 10.1007/s00477-021-01989-z)
Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300. https://doi.org/10.1016/j.jhydrol.2014.02.053. (PMID: 10.1016/j.jhydrol.2014.02.053)
Nayak S, Mukhopadhyay BP, Mitra AK, Chakraborty R (2020) Structural control on the occurrence of groundwater in granite gneissic terrain, Purulia, West Bengal. Arab J Geosci 13. https://doi.org/10.1007/s12517-020-05853-2.
Nivedika M, Meghwal M, Ramana PV (2021) Forecasting drought via soft-computation multi-layer perceptron artificial intelligence model. Int Res J Adv Sci Hub 3:30–36. https://doi.org/10.47392/irjash.2021.206. (PMID: 10.47392/irjash.2021.206)
Orimoloye IR, Belle JA, Olusola AO, Busayo ET, Ololade OO (2021) Spatial assessment of drought disasters, vulnerability, severity and water shortages: a potential drought disaster mitigation strategy. Nat Hazards 105:2735–2754. https://doi.org/10.1007/s11069-020-04421-x. (PMID: 10.1007/s11069-020-04421-x)
Palchaudhuri M, Biswas S (2016) Application of AHP with GIS in drought risk assessment for Puruliya district, India. Nat Hazards 84:1905–1920. https://doi.org/10.1007/s11069-016-2526-3. (PMID: 10.1007/s11069-016-2526-3)
Pham BT, Tien Bui D, Prakash I, Dholakia MB (2017) Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149:52–63. https://doi.org/10.1016/j.catena.2016.09.007. (PMID: 10.1016/j.catena.2016.09.007)
Pielke R (2021) Economic ‘normalisation’ of disaster losses 1998–2020: a literature review and assessment. Environ Hazards 20:93–111. https://doi.org/10.1080/17477891.2020.1800440. (PMID: 10.1080/17477891.2020.1800440)
Poonia V, Goyal MK, Gupta BB, Gupta AK, Jha S, Das J (2021) Drought occurrence in different river basins of India and blockchain technology based framework for disaster management. J Clean Prod 312:127737. https://doi.org/10.1016/j.jclepro.2021.127737. (PMID: 10.1016/j.jclepro.2021.127737)
Pyarali K, Peng J, Disse M, Tuo Y (2022) Development and application of high resolution SPEI drought dataset for Central Asia. Sci Data 9:1–14. https://doi.org/10.1038/s41597-022-01279-5. (PMID: 10.1038/s41597-022-01279-5)
Raha S, Gayen SK (2021) Comparative study of different exponential smoothing models in simulation of meteorological drought: a study on purulia district, West Bengal, India. J Appl Nat Sci 13:504–511.
Rajan K, Natarajan A, Kumar KSA (2020) Current Science association soil organic carbon–the most reliable indicator for monitoring land degradation by soil erosion Author (s): K . Rajan , A . Natarajan , K . S . Anil Kumar , M . S . Badrinath and R . C . Gowda Published by : Current Science 99:823–827.
Rajeevan M, Rohini P, Anil Nair S, Tirkey S, Goswami T, Kumar N (2023) Heat and cold waves in India processes and predictability. 01.
Rama Rao CA, Raju BMK, Subba Rao AVM, Rao KV, Rao VUM, Ramachandran K, Venkateswarlu B, Sikka AK, Rao MS, Maheswari M, Rao CS (2016) A district level assessment of vulnerability of Indian agriculture to climate change. Curr Sci 110:1939–1946. https://doi.org/10.18520/cs/v110/i10/1939-1946. (PMID: 10.18520/cs/v110/i10/1939-1946)
Rezaei H, Faaljou H, Mansourfar G (2021) Stock price prediction using deep learning and frequency decomposition. Expert Syst Appl 169:114332. https://doi.org/10.1016/j.eswa.2020.114332. (PMID: 10.1016/j.eswa.2020.114332)
Roy S, Hazra S (2020) Monthly drought assessment and early warning for droughts in Purulia district of West Bengal. Indian Gr Water XV:7–19.
Roy S, Hazra S, Chanda A (2023a) Changing characteristics of meteorological drought and its impact on monsoon-rice production in sub-humid red and laterite zone of West Bengal, India. Theor Appl Climatol 151:1419–1433. https://doi.org/10.1007/s00704-022-04316-w. (PMID: 10.1007/s00704-022-04316-w)
Roy S, Hazra S, Chanda A (2023b) Assessment of wet season agricultural droughts using monthly MODIS and SAR data in the red and lateritic zone of West Bengal, India. Spat Inf Res 31:195–210. https://doi.org/10.1007/s41324-022-00485-y. (PMID: 10.1007/s41324-022-00485-y)
Safarianzengir V, Fatahi A, Sobhani B, Doumari SA (2022) Temporal and spatial analysis and monitoring of drought (meteorology) and its impacts on environment changes in Iran. Atmos Sci Lett 23:1–15. https://doi.org/10.1002/asl.1080. (PMID: 10.1002/asl.1080)
Saha S, Gogoi P, Gayen A, Paul GC (2021) Constructing the machine learning techniques based spatial drought vulnerability index in Karnataka state of India. J Clean Prod 314:128073. https://doi.org/10.1016/j.jclepro.2021.128073. (PMID: 10.1016/j.jclepro.2021.128073)
Saha S, Gayen A, Gogoi P, Kundu B, Paul GC, Pradhan B (2022b) Proposing novel ensemble approach of particle swarm optimized and machine learning algorithms for drought vulnerability mapping in Jharkhand, India. Geocarto Int 37:8004–8035. https://doi.org/10.1080/10106049.2021.1989500. (PMID: 10.1080/10106049.2021.1989500)
Saha S, Kundu B, Saha A, Mukherjee K, Pradhan B (2023) Manifesting deep learning algorithms for developing drought vulnerability index in monsoon climate dominant region of West Bengal, India. Theor Appl Climatol 151:891–913. https://doi.org/10.1007/s00704-022-04300-4. (PMID: 10.1007/s00704-022-04300-4)
Saha A, Pal SC, Chowdhuri I, Islam ARMT, Roy P, Chakrabortty R (2022a) Land degradation risk dynamics assessment in red and lateritic zones of eastern plateau, India: a combine approach of K-fold CV, data mining and field validation. Ecol Inform 69. https://doi.org/10.1016/j.ecoinf.2022.101653.
Saha S, Sarkar R, Roy J, Bayen B, Bhardwaj D, Wangchuk T (2022c) Application of RBF and MLP neural networks integrating with rotation forest in modeling landslide susceptibility of sampheling, Bhutan. Springer Singapore.
Sarkar B, Dutta S, Singh PK (2022) Drought and temporary migration in rural India: a comparative study across different socio-economic groups with a cross-sectional nationally representative dataset. PLoS ONE 17:1–21. https://doi.org/10.1371/journal.pone.0275449. (PMID: 10.1371/journal.pone.0275449)
Senapati U, Das TK (2024) Geospatial assessment of agricultural drought vulnerability using integrated three-dimensional model in the upper Dwarakeshwar river basin in West Bengal, India. Environ Sci Pollut Res 31:54061–54088. https://doi.org/10.1007/s11356-022-23663-9. (PMID: 10.1007/s11356-022-23663-9)
Shrestha N (2020) Detecting multicollinearity in regression analysis. Am J Appl Math Stat 8:39–42. https://doi.org/10.12691/ajams-8-2-1. (PMID: 10.12691/ajams-8-2-1)
Singh U, Sharma PK (2022) Drought forecasting using the stochastic model in the Betwa river basin, India. Model Earth Syst Environ 8:1771–1786. https://doi.org/10.1007/s40808-021-01187-4. (PMID: 10.1007/s40808-021-01187-4)
Staupe-Delgado R, Rubin O (2022) Challenges associated with creeping disasters in disaster risk science and practice: considering disaster onset dynamics. Int J Disaster Risk Sci 13:1–11. https://doi.org/10.1007/s13753-022-00391-9. (PMID: 10.1007/s13753-022-00391-9)
Stoelzle M, Stahl K, Morhard A, Weiler M (2014) In catchments with different geology. Geophys Res Lett 6174–6183. https://doi.org/10.1002/2014GL061344.Received.
Taiwo BE, Al KA, Samuel AA, Rahaman ZA, Ayowole OE, Shahrier M, Duti BM, Rahman MT, Peter OT, Abosede OO (2023) Monitoring and predicting the influences of land use/land cover change on cropland characteristics and drought severity using remote sensing techniques. Environ Sustain Indic 18:100248. https://doi.org/10.1016/j.indic.2023.100248. (PMID: 10.1016/j.indic.2023.100248)
Islam ARMT, Talukdar S, Mahato S et al (2021) Machine learning algorithm-based risk assessment of riparian wet lands in Padma River Basin of Northwest Bangladesh. Environ Sci Pollut Res 28:34450–34471. https://doi.org/10.1007/s11356-021-12806-z.
Tian L, Disse M, Huang J (2023) Drought cascades across multiple systems in Central Asia identified based on the dynamic space–time motion approach. Hydrol Earth Syst Sci 27:4115–4133. https://doi.org/10.5194/hess-27-4115-2023. (PMID: 10.5194/hess-27-4115-2023)
Topçu E, Seçkin N, Haktanır NA (2022) Drought analyses of Eastern Mediterranean, Seyhan, Ceyhan, and Asi Basins by using aggregate drought index (ADI). Theor Appl Climatol 147:909–924. https://doi.org/10.1007/s00704-021-03873-w. (PMID: 10.1007/s00704-021-03873-w)
Torabi Haghighi A, Darabi H, Karimidastenaei Z, Davudirad AA, Rouzbeh S, Rahmati O, Hosseini FS, Klöve B (2021) Land degradation risk mapping using topographic, human-induced, and geo-environmental variables and machine learning algorithms, for the Pole-Doab watershed. Iran Environ Earth Sci 80:1–21. https://doi.org/10.1007/s12665-020-09327-2. (PMID: 10.1007/s12665-020-09327-2)
Truong TT, Dinh-Cong D, Lee J, Nguyen-Thoi T (2020) An effective deep feedforward neural networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data. J Build Eng 30:101244. https://doi.org/10.1016/j.jobe.2020.101244. (PMID: 10.1016/j.jobe.2020.101244)
Senapati U, Raha S, Das TK, & Gayen SK (2021) A composite assessment of agricultural drought susceptibility using analytic hierarchy process: case study of western region of West Bengal. In: Rukhsana & Alam, A. (eds) Agriculture, Food and Nutrition Security. Springer, Cham. https://doi.org/10.1007/978-3-030-69333-6_2.
Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. https://doi.org/10.1175/2009JCLI2909.1. (PMID: 10.1175/2009JCLI2909.1)
Vo TQ, Kim SH, Nguyen DH, Bae DH (2023) LSTM-CM: a hybrid approach for natural drought prediction based on deep learning and climate models. Stoch Environ Res Risk Assess 37:2035–2051. https://doi.org/10.1007/s00477-022-02378-w. (PMID: 10.1007/s00477-022-02378-w)
Wan W, Zhou Y (2024) Deep hybridnet for drought prediction based on large-scale climate indices and local meteorological conditions. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-024-02826-9. (PMID: 10.1007/s00477-024-02826-9)
Wang Y, Wang S, Zhao W, Liu Y (2022) The increasing contribution of potential evapotranspiration to severe droughts in the Yellow River basin. J Hydrol 605:127310. https://doi.org/10.1016/j.jhydrol.2021.127310. (PMID: 10.1016/j.jhydrol.2021.127310)
Wang Y, Cui J, Miao B, Li Z, Wang Y, Jia C, Liang C (2024) Evaluating performance of multiple machine learning models for drought monitoring: a case study of typical grassland in Inner Mongolia. Land 13. https://doi.org/10.3390/land13060754.
Williams MS, Haynes S (2022) From the Asian financial crisis to the looming threat of deglobalization: an ASEAN Plus Three Summit. In: The politics of the Asia-Pacific: triumphs, challenges, and threats, pp 318.
Wu JM-T, Li Z, Herencsar N, Vo B, Lin JCW (2023) A graph-based CNN-LSTM stock price prediction algorithm with leading indicators. Multimed Syst 29:1751–1770. https://doi.org/10.1007/s00530-021-00758-w. (PMID: 10.1007/s00530-021-00758-w)
Xu L, Zhang X, Wu T, Yu H, Du W, Zhang C, Chen N (2024) Global prediction of flash drought using machine learning. Geophys Res Lett 51:1–9. https://doi.org/10.1029/2024GL111134. (PMID: 10.1029/2024GL111134)
Yu M, Zhang J, Wei L, Wang G, Dong W, Liu X (2023) Impact of soil textures on agricultural drought evolution and field capacity estimation in humid regions. J Hydrol 626:130257. https://doi.org/10.1016/j.jhydrol.2023.130257. (PMID: 10.1016/j.jhydrol.2023.130257)
Zhang N, Shen S-L, Zhou A, Jin Y-F (2021) Application of LSTM approach for modelling stress–strain behaviour of soil. Appl Soft Comput 100:106959. https://doi.org/10.1016/j.asoc.2020.106959. (PMID: 10.1016/j.asoc.2020.106959)
Zhao Y (2020) Spatial-temporal correlation-based LSTM algorithm and its application in PM2.5 prediction. Rev d’Intelligence Artif 34:29–38. https://doi.org/10.18280/ria.340104. (PMID: 10.18280/ria.340104)
Contributed Indexing:
Keywords: Drought proneness Rarh region; Hybrid deep learning ensemble; Machine learning; SPI
Entry Date(s):
Date Created: 20250625 Date Completed: 20250718 Latest Revision: 20250718
Update Code:
20250718
DOI:
10.1007/s11356-025-36634-7
PMID:
40560313
Database:
MEDLINE

Weitere Informationen

Drought is a complex natural calamity that has serious consequences for ecosystems and society, demanding its identification for effective mitigation. This study analyzed drought scenarios in West Bengal's Rarh Region at 3-, 6-, and 12-month intervals, as the Birbhum and Purba Bardhhaman districts are experiencing decreasing rainfall trends. Purba Bardhhaman, noted for its rice production, is undergoing severe drought, affecting agriculture and food security. The current study analyzed 27 drought assessment factors from meteorological, agricultural, hydrological, and socioeconomic perspectives. A Multi-Layer Perceptron Neural Network (MLP NN) was used as the benchmark, followed by a DenseNet neural network. A Hybrid Deep Learning Ensemble model was built to provide a precise drought-prone map. The results showed that 26.66% of the region is very highly drought-prone at a 3-month interval, 20% at 6 months, and 25% at 12 months. The Hybrid Deep Learning Ensemble model had the highest accuracy, with ROC-AUC values of 94.2%, 94.3%, and 95.3% at 3, 6, and 12-month intervals, respectively. The study provides crucial insights for West Bengal policymakers to handle rising drought risks, underlining the importance of implementing appropriate drought management techniques. This study emphasizes the importance of the spatial scope and underlying causes of drought sensitivity to specific mitigation strategies that ensure sustainable development.
(© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Declarations. Ethical approval: All authors have read, understood, and complied as applicable with the"Ethical responsibilities of Authors"statement in the Instructions for Authors. Consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare that they have no known competing financial interests or personal ties that may have seemingly influenced the work presented in this study. The study involves humans and/or animals: This is not applicable.