Treffer: Artificial intelligence-powered microscopy: Transforming the landscape of parasitology.
Kent, R. S., Briggs, E. M., Colon, B. L., Alvarez, C., Silva Pereira, S., & De Niz, M. (2022). Paving the way: Contributions of big data to Apicomplexan and Kinetoplastid research. Frontiers in Cellular and Infection Microbiology, 12, 900878.
Liffner, B., & Absalon, S. (2024). Expansion microscopy of apicomplexan parasites. Molecular Microbiology, 121, 619–635.
Guizetti, J. (2025). Imaging malaria parasites across scales and time. Journal of Microscopy. https://doi.org/10.1111/jmi.13384.
Cyrklaff, M., Frischknecht, F., & Kudryashev, M. (2017). Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiology Reviews, 41, 828–853.
Theveny, L. M., Mageswaran, S. K., Chen, W. D., Martinez, M., Guérin, A., & Chang, Y.‐W. (2022). Parasitology meets cryo‐electron tomography—Exciting prospects await. Trends in Parasitology, 38, 365–378.
Cooper, C., Thompson, R. C. A., & Clode, P. L. (2023). Investigating parasites in three dimensions: trends in volume microscopy. Trends in Parasitology, 39, 668–681.
Prescilla‐Ledezma, A., Linares, F., Ortega‐Muñoz, M., Retana Moreira, L., Jódar‐Reyes, A. B., Hernandez‐Mateo, F., Santoyo‐Gonzalez, F., & Osuna, A. (2022). Molecular recognition of surface trans‐sialidases in extracellular Vesicles of the parasite Trypanosoma cruzi using atomic force microscopy (AFM). International Journal of Molecular Sciences, 23, 7193. https://doi.org/10.3390/ijms23137193.
Dumètre, A., Dubey, J. P., Ferguson, D. J. P., Bongrand, P., Azas, N., & Puech, P.‐H. (2013). Mechanics of the Toxoplasma gondii oocyst wall. Proceedings of the National Academy of Sciences, 110, 11535–11540.
Akaki, M., Nagayasu, E., Nakano, Y., & Aikawa, M. (2002). Surface charge of Plasmodium falciparum merozoites as revealed by atomic force microscopy with surface potential spectroscopy. Parasitology Research, 88, 16–20.
Nagao, E., Kaneko, O., & Dvorak, J. A. (2000). Plasmodium falciparum‐infected erythrocytes: Qualitative and quantitative analyses of parasite‐induced knobs by atomic force microscopy. Journal of Structural Biology, 130, 34–44.
Mullick, D., Rechav, K., Leiserowitz, L., Regev‐Rudzki, N., Dzikowski, R., & Elbaum, M. (2022). Diffraction contrast in cryo‐scanning transmission electron tomography reveals the boundary of hemozoin crystals in situ. Faraday Discussions, 240, 127–141.
Kapishnikov, S., Weiner, A., Shimoni, E., Guttmann, P., Schneider, G., Dahan‐Pasternak, N., Dzikowski, R., Leiserowitz, L., & Elbaum, M. (2012). Oriented nucleation of hemozoin at the digestive vacuole membrane in Plasmodium falciparum. Proceedings of the National Academy of Sciences, 109, 11188–11193.
Conesa, J. J., Sevilla, E., Terrón, M. C., González, L. M., Gray, J., Pérez‐Berná, A. J., Carrascosa, J. L., Pereiro, E., Chichón, F. J., Luque, D., & Montero, E. (2020). Four‐dimensional characterization of the Babesia divergens asexual life cycle, from the trophozoite to the multiparasite stage. mSphere, 5, e00928–20. https://doi.org/10.1128/msphere.00928‐20.
Kapishnikov, S., Grolimund, D., Schneider, G., Pereiro, E., McNally, J. G., Als‐Nielsen, J., & Leiserowitz, L. (2017). Unraveling heme detoxification in the malaria parasite by in situ correlative X‐ray fluorescence microscopy and soft X‐ray tomography. Scientific Reports, 7, 7610.
Hanssen, E., Knoechel, C., Dearnley, M., Dixon, M. W. A., Le Gros, M., Larabell, C., & Tilley, L. (2012). Soft X‐ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. Journal of Structural Biology, 177, 224–232.
Magowan, C., Brown, J. T., Liang, J., Heck, J., Coppel, R. L., Mohandas, N., & Meyer‐Ilse, W. (1997). Intracellular structures of normal and aberrant Plasmodium falciparum malaria parasites imaged by soft x‐ray microscopy. Proceedings of the National Academy of Sciences, 94, 6222–6227.
De Niz, M., Spadin, F., Marti, M., Stein, J. V, Frenz, M., & Frischknecht, F. (2019). Toolbox for in vivo imaging of host–parasite interactions at multiple scales. Trends in Parasitology, 35, 193–212.
de Korne, C. M., van Lieshout, L., van Leeuwen, F. W. B., & Roestenberg, M. (2023). Imaging as a (pre)clinical tool in parasitology. Trends in Parasitology, 39, 212–226.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65, 368408.
Gasparetto, A., & Scalera, L. (2019). From the unimate to the delta robot: The early decades of industrial robotics. In B. Zhang, & M. Ceccarelli (Eds.), Explorations in the history and heritage of machines and mechanisms (pp. 284–295). Springer International Publishing.
Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., & Lederberg, J. (1993). DENDRAL: A case study of the first expert system for scientific hypothesis formation. Artificial Intelligence, 61, 209–261.
Weizenbaum, J. (1966). ELIZA—A computer program for the study of natural language communication between man and machine. Communications of the ACM, 9, 36–45.
Moravec, H. P. (1990). The Stanford cart and the CMU rover. In I. J. Cox, & G. T. Wilfong (Eds.), Autonomous robot vehicles (pp. 407–419). Springer New Yorks.
Li, B., & Gilbert, S. (2024). Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine. NPJ Digital Medicine, 7, 336. https://doi.org/10.1038/s41746‐024‐01345‐9.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the U S A, 79, 2554–2558.
Hinton, G. E., & Sejnowski, T. J. (1983). Optimal perceptual inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 448–453). Citeseer.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera‐Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.
IBM. (2024). What is machine learning? https://www.ibm.com/think/topics/machine‐learning.
Eisenstein, M. (2023). AI under the microscope: The algorithms powering the search for cells. Nature, 623, 1095–1097.
Roques, M., Bindschedler, A., Beyeler, R., & Heussler, V. T. (2023). Same, same but different: Exploring plasmodium cell division during liver stage development. PLOS Pathogens, 19, e1011210.
Lahree, A., Mello‐Vieira, J., & Mota, M. M. (2023). The nutrient games—Plasmodium metabolism during hepatic development. Trends in Parasitology, 39, 445–460.
Walker, I. S., & Rogerson, S. J. (2023). Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence, 14, 2150456.
Wiser, M. F. (2023). Knobs, Adhesion, and Severe Falciparum Malaria. Tropical Medicine and Infectious Disease, 8, https://doi.org/10.3390/tropicalmed8070353.
Evi, H., & Deitsch, K. W. (2025). Variable surface antigen expression, virulence, and persistent infection by Plasmodium falciparum malaria parasites. Microbiology and Molecular Biology Reviews, 89, e0011423.
Kaur, D., Sinha, S., & Sehgal, R. (2022). Global scenario of Plasmodium vivax occurrence and resistance pattern. Journal of Basic Microbiology, 62, 1417–1428.
Anstey, N. M., Tham, W.‐H., Shanks, G. D., Poespoprodjo, J. R., Russell, B. M., & Kho, S. (2024). The biology and pathogenesis of vivax malaria. Trends in Parasitology, 40, 573–590.
Hawadak, J., Dongang Nana, R. R., & Singh, V. (2021). Global trend of Plasmodium malariae and Plasmodium ovale spp. malaria infections in the last two decades (2000–2020): A systematic review and meta‐analysis. Parasites & Vectors, 14, 297.
Huber, J. H., Elliott, M., Koepfli, C., & Perkins, T. A. (2023). The impact of emerging Plasmodium knowlesi on accurate diagnosis by light microscopy: A systematic review and modeling analysis. The American Journal of Tropical Medicine and Hygiene, 108, 61–68.
Naserrudin, N. A., Hassan, M. R., Jeffree, M. S., Culleton, R., Hod, R., & Ahmed, K. (2022). A systematic review of asymptomatic Plasmodium knowlesi infection: An emerging challenge involving an emerging infectious disease. Malaria Journal, 21, 373.
Johnson, E., Sunil Kumar Sharma, R., Ruiz Cuenca, P., Byrne, I., Salgado‐Lynn, M., Suraya Shahar, Z., Col Lin, L., Zulkifli, N., Dilaila Mohd Saidi, N., Drakeley, C., Matthiopoulos, J., Nelli, L., & Fornace, K. (2024). Landscape drives zoonotic malaria prevalence in non‐human primates. eLife, 12, RP88616.
Das, D. K., Mukherjee, R., & Chakraborty, C. (2015). Computational microscopic imaging for malaria parasite detection: A systematic review. Journal of Microscopy, 260, 1–19.
Ikerionwu, C., Ugwuishiwu, C., Okpala, I., James, I., Okoronkwo, M., Nnadi, C., Orji, U., Ebem, D., & Ike, A. (2022). Application of machine and deep learning algorithms in optical microscopic detection of Plasmodium: A malaria diagnostic tool for the future. Photodiagnosis and Photodynamic Therapy, 40, 103198.
Hu, R.‐S., Hesham, A. E.‐L., & Zou, Q. (2022). Machine learning and its applications for protozoal pathogens and protozoal infectious diseases. Frontiers in Cellular and Infection Microbiology, 12, 882995.
Feng, R., Li, S., & Zhang, Y. (2024). AI‐powered microscopy image analysis for parasitology: integrating human expertise. Trends in Parasitology, 40, 633–646.
Sanjai, N., Roxanna, H., Dayeong, B., & Krystin, D. (2024). Diagnosis of Plasmodium infections using artificial intelligence techniques versus standard microscopy in a reference laboratory. Journal of Clinical Microbiology, 63, e0077524.
Attaway, C., Mathison, B. A., & Misra, A. (2024). No longer stuck in the past: New advances in artificial intelligence and molecular assays for parasitology screening and diagnosis. Current Opinion in Infectious Diseases, 37, 357–366.
Sio, S. W. S., Sun, W., Kumar, S., Bin, W. Z., Tan, S. S., Ong, S. H., Kikuchi, H., Oshima, Y., & Tan, K. S. W. (2007). MalariaCount: An image analysis‐based program for the accurate determination of parasitemia. Journal of Microbiological Methods, 68, 11–18.
Goodarzi, M., & Freitas, M. P. (2011). MIA‐QSAR coupled to different regression methods for the modeling of antimalarial activities of 2‐aziridinyl and 2,3‐bis‐(aziridinyl)‐1,4‐naphtoquinonyl sulfate and acylate derivatives. Medicinal Chemistry, 6, 645–654.
Yu, H., Yang, F., Rajaraman, S., Ersoy, I., Moallem, G., Poostchi, M., Palaniappan, K., Antani, S., Maude, R. J., & Jaeger, S. (2020). Malaria Screener: A smartphone application for automated malaria screening. BMC Infectious Diseases, 20, 825.
Horning, M. P., Delahunt, C. B., Bachman, C. M., Luchavez, J., Luna, C., Hu, L., Jaiswal, M. S., Thompson, C. M., Kulhare, S., Janko, S., Wilson, B. K., Ostbye, T., Mehanian, M., Gebrehiwot, R., Yun, G., Bell, D., Proux, S., Carter, J. Y., Oyibo, W., … Mehanian, C. (2021). Performance of a fully‐automated system on a WHO malaria microscopy evaluation slide set. Malaria Journal, 20, 110.
Das, D., Vongpromek, R., Assawariyathipat, T., Srinamon, K., Kennon, K., Stepniewska, K., Ghose, A., Sayeed, A. A., Faiz, M. A., Netto, R. L. A., Siqueira, A., Yerbanga, S. R., Ouédraogo, J. B., Callery, J. J., Peto, T. J., Tripura, R., Koukouikila‐Koussounda, F., Ntoumi, F., Michael Ong'echa, J., … Dhorda, M. (2022). Field evaluation of the diagnostic performance of EasyScan GO: A digital malaria microscopy device based on machine‐learning. Malaria Journal, 21, 122.
Maturana, C. R., de Oliveira, A. D., Nadal, S., Serrat, F. Z., Sulleiro, E., Ruiz, E., Bilalli, B., Veiga, A., Espasa, M., Abelló, A., Suñé, T. P., Segú, M., López‐Codina, D., Clols, E. S., & Joseph‐Munné, J. (2023). iMAGING: A novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low‐cost robotized microscope. Frontiers in Microbiology, 14, 1240936.
Purnama, I. K. E., Rahmanti, F. Z., & Purnomo, M. H. (2013). Malaria parasite identification on thick blood film using genetic programming. In 2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI‐BME) (pp. 194–198). IEEE.
Dey, S., Nath, P., Biswas, S., Nath, S., & Ganguly, A. (2021). Malaria detection through digital microscopic imaging using Deep Greedy Network with transfer learning. Journal of Medical Imaging, 8, 054502.
Jameela, T., Athota, K., Singh, N., Gunjan, V. K., & Kahali, S. (2022). Deep learning and transfer learning for malaria detection. Computational Intelligence and Neuroscience, 2022, 2221728.
Khan, G. Z., Shah, I., Ullah, F., Hassan, M., Junaid, H., & Sardar, F. (2023). Intelligent systems for early malaria disease detection in patient cells using transfer learning approaches. In 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 2023 (pp. 1–6). IEEE. https://doi.org/10.1109/iCoMET57998.2023.10099260.
Ramos, J., da, S., Vieira, I. H. P., Rocha, W. S., Esquerdo, R. P., Watanabe, C. Y. V., & Zanchi, F. B. (2024). A transfer learning approach to identify Plasmodium in microscopic images. PLOS Computational Biology, 20, e1012327.
Arrabelly, S. B. R., & Juliet, S. (2019). Transfer learning with ResNet‐50 for malaria cell‐image classification. In 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2019 (pp. 0945–0949). IEEE. https://doi.org/10.1109/ICCSP.2019.8697909.
Tan, D., & Liang, X. (2023). Multiclass malaria parasite recognition based on transformer models and a generative adversarial network. Scientific Reports, 13, 17136.
Arshad, Q. A., Ali, M., Hassan, S., Chen, C., Imran, A., Rasul, G., & Sultani, W. (2022). A dataset and benchmark for malaria life‐cycle classification in thin blood smear images. Neural Computing and Applications, 34, 4473–4485.
Oliveira, A. D., Prats, C., Espasa, M., Zarzuela Serrat, F., Montañola Sales, C., Silgado, A., Codina, D. L., Arruda, M. E., i Prat, J. G., & Albuquerque, J. (2017). The malaria system MicroApp: A new, mobile device‐based tool for malaria diagnosis. JMIR Research Protocol, 6, e70.
Dallet, C., Kareem, S., & Kale, I. (2014). Real time blood image processing application for malaria diagnosis using mobile phones. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2405–2408). IEEE.
Quinn, J., Andama, A., Munabi, I., & Kiwanuka, F. (2014). Automated blood smear analysis for mobile malaria diagnosis. In W. Karlen and K. Iniewski (Eds.), Mobile point‐of‐care monitors and diagnostic device design (pp. 115–132). CRC Press, IEEE.
Cesario, M., Lundon, M., Luz, S., Masoodian, M., & Rogers, B. (2012). Mobile support for diagnosis of communicable diseases in remote locations. In Proceedings of the 13th International Conference of the NZ Chapter of the ACM's Special Interest Group on Human‐Computer Interaction (pp. 25–28). Association for Computing Machinery.
Mujahid, M., Rustam, F., Shafique, R., Montero, E. C., Alvarado, E. S., de la Torre Diez, I., & Ashraf, I. (2024). Efficient deep learning‐based approach for malaria detection using red blood cell smears. Scientific Reports, 14, 13249.
Guemas, E., Routier, B., Ghelfenstein‐Ferreira, T., Cordier, C., Hartuis, S., Marion, B., Bertout, S., Varlet‐Marie, E., Costa, D., & Pasquier, G. (2024). Automatic patient‐level recognition of four Plasmodium species on thin blood smear by a real‐time detection transformer (RT‐DETR) object detection algorithm: a proof‐of‐concept and evaluation. Microbiol Spectr, 12, e01440–23. https://doi.org/10.1128/spectrum.01440‐23.
Murel, J., & Kavlakoglu, E. (2024). What is transfer learning? IBM. https://www.ibm.com/think/topics/transfer‐learning.
Vilalta, R., Giraud‐Carrier, C., Brazdil, P., & Soares, C. (2010). Inductive transfer. In: C. Sammut, & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 545–548). Springer US.
Prudêncio, M., Rodriguez, A., & Mota, M. M. (2006). The silent path to thousands of merozoites: The Plasmodium liver stage. Nature Reviews Microbiology, 4, 849–856.
Afriat, A., Zuzarte‐Luís, V., Bahar Halpern, K., Buchauer, L., Marques, S., Chora, Â. F., Lahree, A., Amit, I., Mota, M. M., & Itzkovitz, S. (2022). A spatiotemporally resolved single‐cell atlas of the Plasmodium liver stage. Nature, 611, 563–569.
Otesteanu, C. F., Caldelari, R., Heussler, V., & Sznitman, R. (2024). Machine learning for predicting Plasmodium liver stage development in vitro using microscopy imaging. Computational and Structural Biotechnology Journal, 24, 334–342.
Sollelis, L., Howick, V. M., & Marti, M. (2024). Revisiting the determinants of malaria transmission. Trends in Parasitology, 40, 302–312.
Eshel, Y., Houri‐Yafin, A., Benkuzari, H., Lezmy, N., Soni, M., Charles, M., Swaminathan, J., Solomon, H., Sampathkumar, P., Premji, Z., Mbithi, C., Nneka, Z., Onsongo, S., Maina, D., Levy‐Schreier, S., Cohen, C. L., Gluck, D., Pollak, J. J., & Salpeter, S. J. (2017). Evaluation of the parasight platform for malaria diagnosis. Journal of Clinical Microbiology, 55, 768–775.
Di Ruberto, C., Dempster, A., Khan, S., & Jarra, B. (2002). Analysis of infected blood cell images using morphological operators. Image and Vision Computing, 20, 133–146.
Di Ruberto, C., Dempster, A., Khan, S., & Jarra, B. (2001). Morphological image processing for evaluating malaria disease. In C. Arcelli, L. P. Cordella, & G. S. di Baja (Eds.), Visual form 2001 (pp. 739–748). Springer Berlin Heidelberg.
Tsebriy, O., Khomiak, A., Miguel‐Blanco, C., Sparkes, P. C., Gioli, M., Santelli, M., Whitley, E., Gamo, F.‐J., & Delves, M. J. (2023). Machine learning‐based phenotypic imaging to characterise the targetable biology of Plasmodium falciparum male gametocytes for the development of transmission‐blocking antimalarials. PLOS Pathogens, 19, e1011711.
Kessler, A., Dankwa, S., Bernabeu, M., Harawa, V., Danziger, S. A., Duffy, F., Kampondeni, S. D., Potchen, M. J., Dambrauskas, N., Vigdorovich, V., Oliver, B. G., Hochman, S. E., Mowrey, W. B., MacCormick, I. J. C., Mandala, W. L., Rogerson, S. J., Sather, D. N., Aitchison, J. D., Taylor, T. E., … Kim, K. (2017). Linking EPCR‐binding PfEMP1 to brain swelling in pediatric cerebral malaria. Cell Host & Microbe, 22, 601–614.e5.
Sahu, P. K., Duffy, F. J., Dankwa, S., Vishnyakova, M., Majhi, M., Pirpamer, L., Vigdorovich, V., Bage, J., Maharana, S., Mandala, W., Rogerson, S. J., Seydel, K. B., Taylor, T. E., Kim, K., Sather, D. N., Mohanty, A., Mohanty, R. R., Mohanty, A., Smith, J. D., … Wassmer, S. C. (2022). Determinants of brain swelling in pediatric and adult cerebral malaria. JCI Insight, 6, e145823. https://doi.org/10.1172/jci.insight.145823.
Whitten, M. M. A., Shiao, S. H., & Levashina, E. A. (2006). Mosquito midguts and malaria: Cell biology, compartmentalization and immunology. Parasite Immunology, 28, 121–130.
Esperança, P. M., Blagborough, A. M., Da, D. F., Dowell, F. E., & Churcher, T. S. (2018). Detection of Plasmodium berghei infected Anopheles stephensi using near‐infrared spectroscopy. Parasites & Vectors, 11, 377.
Jiménez‐Moreno, A., Střelák, D., Filipovič, J., Carazo, J. M., & Sorzano, C. O. S. (2021). DeepAlign, a 3D alignment method based on regionalized deep learning for Cryo‐EM. Journal of Structural Biology, 213, 107712.
Sorzano, C. O. S., Vargas, J., de la Rosa‐Trevín, J. M., Jiménez, A., Maluenda, D., Melero, R., Martínez, M., Ramírez‐Aportela, E., Conesa, P., Vilas, J. L., Marabini, R., & Carazo, J. M. (2018). A new algorithm for high‐resolution reconstruction of single particles by electron microscopy. Journal of Structural Biology, 204, 329–337.
Sorzano, C. O. S., Vargas, J., de la Rosa‐Trevín, J. M., Otón, J., Álvarez‐Cabrera, A. L., Abrishami, V., Sesmero, E., Marabini, R., & Carazo, J. M. (2015). A statistical approach to the initial volume problem in single particle analysis by electron microscopy. Journal of Structural Biology, 189, 213–219.
Scheres, S. H. W. (2012). A Bayesian view on cryo‐EM structure determination. Journal of Molecular Biology, 415, 406–418.
Punjani, A., Rubinstein, J. L., Fleet, D. J., & Brubaker, M. A. (2017). cryoSPARC: Algorithms for rapid unsupervised cryo‐EM structure determination. Nature Methods, 14, 290–296.
Opadokun, T., & Rohrbach, P. (2021). Extracellular vesicles in malaria: an agglomeration of two decades of research. Malaria Journal, 20, 442.
Neveu, G., Richard, C., Dupuy, F., Behera, P., Volpe, F., Subramani, P. A., Marcel‐Zerrougui, B., Vallin, P., Andrieu, M., Minz, A. M., Azar, N., Martins, R. M., Lorthiois, A., Gazeau, F., Lopez‐Rubio, J.‐J., Mazier, D., Silva, A. K. A., Satpathi, S., Wassmer, S. C., … Lavazec, C. (2020). Plasmodium falciparum sexual parasites develop in human erythroblasts and affect erythropoiesis. Blood, 136, 1381–1393.
Abou Karam, P., Rosenhek‐Goldian, I., Ziv, T., Ben Ami Pilo, H., Azuri, I., Rivkin, A., Kiper, E., Rotkopf, R., Cohen, S. R., Torrecilhas, A. C., Avinoam, O., Rojas, A., Morandi, M. I., & Regev‐Rudzki, N. (2022). Malaria parasites release vesicle subpopulations with signatures of different destinations. EMBO Reports, 23, e54755.
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver‐Fay, A., Baker, D., Popović, Z., & Players, F. (2010). Predicting protein structures with a multiplayer online game. Nature, 466, 756–760.
Mavandadi, S., Dimitrov, S., Feng, S., Yu, F., Yu, R., Sikora, U., & Ozcan, A. (2012). Crowd‐sourced BioGames: Managing the big data problem for next‐generation lab‐on‐a‐chip platforms. Lab Chip, 12, 4102–4106.
Mavandadi, S., Dimitrov, S., Feng, S., Yu, F., Sikora, U., Yaglidere, O., Padmanabhan, S., Nielsen, K., & Ozcan, A. (2012). Distributed medical image analysis and diagnosis through crowd‐sourced games: A malaria case study. PLOS ONE, 7, e37245.
Luengo‐Oroz, M. A., Arranz, A., & Frean, J. (2012). Crowdsourcing malaria parasite quantification: An online game for analyzing images of infected thick blood smears. Journal of Medical Internet Research, 14, e167.
Srivastava, B., Anvikar, A. R., Ghosh, S. K., Mishra, N., Kumar, N., Houri‐Yafin, A., Pollak, J. J., Salpeter, S. J., & Valecha, N. (2015). Computer‐vision‐based technology for fast, accurate and cost effective diagnosis of malaria. Malaria Journal, 14, 526.
Vink, J. P., Laubscher, M., Vlutters, R., Silamut, K., Maude, R. J., Hasan, M. U., & De Haan, G. (2013). An automatic vision‐based malaria diagnosis system. Journal of Microscopy, 250, 166–178.
Kaewkamnerd, S., Uthaipibull, C., Intarapanich, A., Pannarut, M., Chaotheing, S., & Tongsima, S. (2012). An automatic device for detection and classification of malaria parasite species in thick blood film. BMC Bioinformatics, 13, S18.
Kumar, J. S., Pandiarajan, S., & Ilakkia, J. K. S. (2023). Automated malaria parasite detection for legal blindness accessibility using Hybrid Deep learning techniques. In 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 988–999). IEEE.
Kareem, A., Liu, H., & Velisavljevic, V. (2024). A privacy‐preserving approach to effectively utilize distributed data for malaria image detection. Bioengineering, 11, 340. https://doi.org/10.3390/bioengineering11040340.
Fornace, K. M., Drakeley, C. J., William, T., Espino, F., & Cox, J. (2014). Mapping infectious disease landscapes: Unmanned aerial vehicles and epidemiology. Trends in Parasitology, 30, 514–519.
Nayeri, T., Sarvi, S., & Daryani, A. (2024). Effective factors in the pathogenesis of Toxoplasma gondii. Heliyon, 10, e31558.
Yakimovich, A., Huttunen, M., Samolej, J., Clough, B., Yoshida, N., Mostowy, S., Frickel, E., & Mercer, J. (2020). Mimicry embedding facilitates advanced neural network training for image‐based pathogen detection. mSphere, 5. https://doi.org/10.1128/msphere.00836‐20.
Li, S., Li, A., Lara, D. A. M., Marín, J. E. G., Juhas, M., & Zhang, Y. (2020). Transfer learning for Toxoplasma gondii recognition. mSystems, 5, e00445–19. https://doi.org/10.1128/msystems.00445‐19.
Fisch, D., Evans, R., Clough, B., Byrne, S. K., Channell, W. M., Dockterman, J., & Frickel, E.‐M. (2021). HRMAn 2.0: Next‐generation artificial intelligence–driven analysis for broad host–pathogen interactions. Cellular Microbiology, 23, e13349.
Fisch, D., Yakimovich, A., Clough, B., Mercer, J., & Frickel, E. M. (2020). Image‐based quantitation of host cell–Toxoplasma gondii interplay using HRMAn: A host response to microbe analysis pipeline. In C. J. Tonkin (Ed.), Toxoplasma gondii: Methods and protocols (pp. 411–433). Springer US.
Fisch, D., Yakimovich, A., Clough, B., Wright, J., Bunyan, M., Howell, M., Mercer, J., & Frickel, E. (2019). Defining host–pathogen interactions employing an artificial intelligence workflow. eLife, 8, e40560.
Christian, D., & Berthold, M. R. (2016). KNIME for open‐source bioimage analysis: A tutorial. In H. De Vos Winnok, S. Munck, & J.‐P. Timmermans (Eds.), Focus on bio‐image informatics (pp. 179–197). Springer International Publishing.
Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Thiel, K., & Wiswedel, B. (2009). KNIME—The Konstanz information miner: Version 2.0 and beyond. SIGKDD Explorations Newsletter, 11, 26–31.
Weigert, M., & Schmidt, U. (2022). Nuclei instance segmentation and classification in histopathology images with stardist. In 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC) (pp. 1–4). IEEE.
Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: A generalist algorithm for cellular segmentation. Nature Methods, 18, 100–106.
Pachitariu, M., & Stringer, C. (2022). Cellpose 2.0: How to train your own model. Nature Methods, 19, 1634–1641.
Schroeder, E. A., Chirgwin, M. E., & Derbyshire, E. R. (2022). Plasmodium's fight for survival: escaping elimination while acquiring nutrients. Trends in Parasitology, 38, 544–557.
Bindschedler, A., Schmuckli‐Maurer, J., Buchser, S., Fischer, T. D., Wacker, R., Davalan, T., Brunner, J., & Heussler, V. T. (2024). LC3B labeling of the parasitophorous vacuole membrane of Plasmodium berghei liver stage parasites depends on the V‐ATPase and ATG16L1. Molecular Microbiology, 121, 1095–1111.
Schmuckli‐Maurer, J., Bindschedler, A. F., Wacker, R., Würgler, O. M., Rehmann, R., Lehmberg, T., Murphy, L. O., Nguyen, T. N., Lazarou, M., Monfregola, J., Ballabio, A., & Heussler, V. T. (2024). Plasmodium berghei liver stage parasites exploit host GABARAP proteins for TFEB activation. Communications Biology, 7, 1554.
Lahree, A., de Jesus Santos Baptista, S., Marques, S., Perschin, V., Zuzarte‐Luís, V., Goel, M., Choudhary, H. H., Mishra, S., Stigloher, C., Zerial, M., Sundaramurthy, V., & Mota, M. M. (2022). Active APPL1 sequestration by Plasmodium favors liver‐stage development. Cell Reports, 39, 110886.
Albuquerque‐Wendt, A., McCoy, C., Neish, R., Dobramysl, U., Alagöz, Ç., Beneke, T., Cowley, S. A., Crouch, K., Wheeler, R. J., Mottram, J. C., & Gluenz, E. (2025). TransLeish: Identification of membrane transporters essential for survival of intracellular Leishmania parasites in a systematic gene deletion screen. Nature Communications, 16, 299.
Dumoulin, P. C., & Burleigh, B. A. (2021). Metabolic flexibility in Trypanosoma cruzi amastigotes: Implications for persistence and drug sensitivity. Current Opinion in Microbiology, 63, 244–249.
de Souza, W., de Carvalho, T. M. U., & Barrias, E. S. (2010). Review on Trypanosoma cruzi: Host cell interaction. International Journal of Cell Biology, 2010, 295394.
Microbe Watch. Microbe Watch. https://www.zooniverse.org/projects/sb99/microbe‐watch.
Zooniverse. Zooniverse. https://www.zooniverse.org/.
Khan, I. A., Hwang, S., & Moretto, M. (2019). Toxoplasma gondii: CD8 T Cells Cry for CD4 Help. Frontiers in Cellular and Infection Microbiology, 9, 136. https://doi.org/10.3389/fcimb.2019.00136.
Benevides, L., Milanezi, C. M., Yamauchi, L. M., Benjamim, C. F., Silva, J. S., & Silva, N. M. (2008). CCR2 receptor is essential to activate microbicidal mechanisms to control Toxoplasma gondii infection in the central nervous system. The American Journal of Pathology, 173, 741–751.
Schneider, C. A., Velez, D. X. F., Orchanian, S. B., Shallberg, L. A., Agalliu, D., Hunter, C. A., Gandhi, S. P., & Lodoen, M. B. (2022). Toxoplasma gondii dissemination in the brain is facilitated by infiltrating peripheral immune cells. mBio, 13, e02838–22.
Porte, R., Belloy, M., Audibert, A., Bassot, E., Aïda, A., Alis, M., Miranda‐Capet, R., Jourdes, A., van Gisbergen, K. P. J. M., Masson, F., & Blanchard, N. (2024). Protective function and differentiation cues of brain‐resident CD8+ T cells during surveillance of latent Toxoplasma gondii infection. Proceedings of the National Academy of Sciences, 121, e2403054121.
Schneider, C. A., Velez, D. X. F., Azevedo, R., Hoover, E. M., Tran, C. J., Lo, C., Vadpey, O., Gandhi, S. P., & Lodoen, M. B. (2019). Imaging the dynamic recruitment of monocytes to the blood‐brain barrier and specific brain regions during Toxoplasma gondii infection. Proceedings of the National Academy of Sciences, 116, 24796–24807.
Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C. L., Hawrylycz, M., & Dang, C. (2013). Allen Brain Atlas: an integrated spatio‐temporal portal for exploring the central nervous system. Nucleic Acids Research, 41, D996–D1008.
Allen Institute. Allen Brain Map. https://portal.brain‐map.org/.
Usey, M. M., & Huet, D. (2022). Parasite powerhouse: A review of the Toxoplasma gondii mitochondrion. Journal of Eukaryotic Microbiology, 69, e12906.
Oliveira Souza, R. O., Jacobs, K. N., Back, P. S., Bradley, P. J., & Arrizabalaga, G. (2022). IMC10 and LMF1 mediate mitochondrial morphology through mitochondrion–pellicle contact sites in Toxoplasma gondii. Journal of Cell Science, 135, jcs260083.
Ovciarikova, J., Lemgruber, L., Stilger, K. L., Sullivan, W. J., & Sheiner, L. (2017). Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Scientific Reports, 7, 42746.
Oliveira Souza, R. O., Yang, C., & Arrizabalaga, G. (2024). Myosin A and F‐Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. PLOS Pathogens, 20, e1012127.
Watts, E., Zhao, Y., Dhara, A., Eller, B., Patwardhan, A., & Sinai, A. P. (2015). Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. mBio, 6, e01155–15. https://doi.org/10.1128/mbio.01155‐15.
Fu, Y., Brown, K. M., Jones, N. G., Moreno, S. N. J., & Sibley, L. D. (2021). Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress. eLife, 10, e73011.
Place, B. C., Troublefield, C. A., Murphy, R. D., Sinai, A. P., & Patwardhan, A. R. (2023). Machine learning based classification of mitochondrial morphologies from fluorescence microscopy images of Toxoplasma gondii cysts. PLOS ONE, 18, e0280746.
Malgwi, S. A., Ogunsakin, R. E., Oladepo, A. D., Adeleke, M. A., & Okpeku, M. (2023). A forty‐year analysis of the literature on Babesia infection (1982–2022): A systematic bibliometric approach. International Journal of Environmental Research and Public Health, 20, 6156. https://doi.org/10.3390/ijerph20126156.
Calchi, A. C., Moore, C. O., Bartone, L., Kingston, E., André, M. R., Breitschwerdt, E. B., & Maggi, R. G. (2024). Development of multiplex assays for the identification of zoonotic Babesia species. Pathogens, 13, 1094. https://doi.org/10.3390/pathogens13121094.
Ord, R. L., & Lobo, C. A. (2015). Human Babesiosis: Pathogens, prevalence, diagnosis, and treatment. Current Clinical Microbiology Reports, 2, 173–181.
Durant, T. J. S., Dudgeon, S. N., McPadden, J., Simpson, A., Price, N., Schulz, W. L., Torres, R., & Olson, E. M. (2022). Applications of digital microscopy and densely connected convolutional neural networks for automated quantification of Babesia‐infected erythrocytes. Clinical Chemistry, 68, 218–229.
Anorboev, A., Musaev, J., Anorboeva, S., Seo, Y.‐S., Nguyen, N. T., Hong, J., & Hwang, D. (2024). Enhancing classification of parasite microscopy images through image edge‐accentuating preprocessing. In N. T. Nguyen, R. Chbeir, Y. Manolopoulos, H. Fujita, T.‐P. Hong, L. M. Nguyen, & K. Wojtkiewicz (Eds.), Intelligent information and database systems (pp. 132–143). Springer Nature Singapore.
Kumar, Y., Garg, P., Moudgil, M. R., Singh, R., Woźniak, M., Shafi, J., & Ijaz, M. F. (2024). Enhancing parasitic organism detection in microscopy images through deep learning and fine‐tuned optimizer. Scientific Reports, 14, 5753.
Li, S., Du, Z., Meng, X., & Zhang, Y. (2021). Multi‐stage malaria parasite recognition by deep learning. GigaScience, 10, giab040.
Li, S., Yang, Q., Jiang, H., Cortés‐Vecino, J. A., & Zhang, Y. (2020). Parasitologist‐level classification of apicomplexan parasites and host cell with deep cycle transfer learning (DCTL). Bioinformatics, 36, 4498–4505.
Jiang, H., Li, S., Liu, W., Zheng, H., Liu, J., & Zhang, Y. (2020). Geometry‐aware cell detection with deep learning. mSystems, 5, e00840–19. https://doi.org/10.1128/msystems.00840‐19.
Tofighi, M., Guo, T., Vanamala, J. K. P., & Monga, V. (2019). Prior information guided regularized deep learning for cell nucleus detection. IEEE Transactions on Medical Imaging, 38, 2047–2058.
Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh, S., Saltukoglu, D., Tay, T. L., Prinz, M., Palme, K., Simons, M., … Ronneberger, O. (2019). U‐Net: Deep learning for cell counting, detection, and morphometry. Nature Methods, 16, 67–70.
Bergmann, D. (2024). What is fine tuning? IBM. https://www.ibm.com/think/topics/fine‐tuning.
CDC. (2024). Cryptosporidiosis. https://www.cdc.gov/dpdx/cryptosporidiosis/index.html.
CDC. (2024). Giardiasis. https://www.cdc.gov/dpdx/giardiasis/index.html.
Ligda, P., Claerebout, E., Kostopoulou, D., Zdragas, A., Casaert, S., Robertson, L. J., & Sotiraki, S. (2020). Cryptosporidium and Giardia in surface water and drinking water: Animal sources and towards the use of a machine‐learning approach as a tool for predicting contamination. Environmental Pollution, 264, 114766.
Widmer, K. W., Oshima, K. H., & Pillai, S. D. (2002). Identification of cryptosporidium parvum oocysts by an artificial neural network approach. Appl Environ Microbiol, 68. https://doi.org/10.1128/AEM.68.3.1115‐1121.2002.
Widmer, K. W., Srikumar, D., & Pillai, S. D. (2005). Use of artificial neural networks to accurately identify cryptosporidium oocyst and giardia cyst images. Appl Environ Microbiol, 71. https://doi.org/10.1128/AEM.71.1.80‐84.2005.
Koydemir, H. C., Gorocs, Z., Tseng, D., Cortazar, B., Feng, S., Chan, R. Y. L., Burbano, J., McLeod, E., & Ozcan, A. (2015). Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile‐phone based fluorescent microscopy and machine learning. Lab Chip, 15, 1284–1293.
Ceylan Koydemir, H., Feng, S., Liang, K., Nadkarni, R., Benien, P., & Ozcan, A. (2017). Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy. Nanophotonics, 6, 731–741.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv.
Luo, J., Liu, A., Yap, P. H., Liedberg, B., & Ser, W. (2018). An mRMR‐SVM approach for opto‐fluidic microorganism classification. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 666–669). IEEE.
Göröcs, Z., Baum, D., Song, F., de Haan, K., Ceylan Koydemir, H., Qiu, Y., Cai, Z., Skandakumar, T., Peterman, S., Tamamitsu, M., & Ozcan, A. (2020). Label‐free detection of Giardia lamblia cysts using a deep learning‐enabled portable imaging flow cytometer. Lab Chip, 20, 4404–4412.
Luo, J., Ser, W., Liu, A., Yap, P. H., Liedberg, B., & Rayatpisheh, S. (2021). Microorganism image classification with circle‐based Multi‐Region Binarization and mutual‐information‐based feature selection. Biomedical Engineering Advances, 2, 100020.
Luo, S., Nguyen, K. T., Nguyen, B. T. T., Feng, S., Shi, Y., Elsayed, A., Zhang, Y., Zhou, X., Wen, B., Chierchia, G., Talbot, H., Bourouina, T., Jiang, X., & Liu, A. Q. (2021). Deep learning‐enabled imaging flow cytometry for high‐speed Cryptosporidium and Giardia detection. Cytometry Part A, 99, 1123–1133.
Luo, S., Shi, Y., Chin, L. K., Zhang, Y., Wen, B., Sun, Y., Nguyen, B. T. T., Chierchia, G., Talbot, H., Bourouina, T., Jiang, X., & Liu, A.‐Q. (2021). Rare bioparticle detection via deep metric learning. RSC Advances, 11, 17603–17610.
Lopez Salguero, J. S., Rodríguez Rendón, M., Triviño Valencia, J., Cuellar Gil, J. A., Naranjo Galvis, C. A., Moscoso Londoño, O., Londoño Calderón, C. L., Gonzáles Osorio, F. A., & Tabares Soto, R. (2023). Automatic detection of Cryptosporidium in optical microscopy images using YOLOv5x: A comparative study. Biochemistry and Cell Biology, 101, 538–549.
Nagamori, Y., Scimeca, R., Hall‐Sedlak, R., Blagburn, B., Starkey, L. A., Bowman, D. D., Lucio‐Forster, A., Little, S. E., Cree, T., Loenser, M., Larson, B. S., Penn, C., Rhodes, A., & Goldstein, R. (2024). Multicenter evaluation of the Vetscan Imagyst system using Ocus 40 and EasyScan One scanners to detect gastrointestinal parasites in feces of dogs and cats. Journal of Veterinary Diagnostic Investigation, 36, 32–40.
Naing, K. M., Boonsang, S., Chuwongin, S., Kittichai, V., Tongloy, T., Prommongkol, S., Dekumyoy, P., & Watthanakulpanich, D. (2022). Automatic recognition of parasitic products in stool examination using object detection approach. PeerJ Computer Science, 8, e1065.
Nkamgang, O. T., Tchiotsop, D., Tchinda, B. S., & Fotsin, H. B. (2018). A neuro‐fuzzy system for automated detection and classification of human intestinal parasites. Informatics in Medicine Unlocked, 13, 81–91.
Saha Tchinda, B., Tchiotsop, D., Tchinda, R., Wolf, D., & Noubom, M. (2015). Automatic recognition of human parasite cysts on microscopic stools images using principal component analysis and probabilistic neural network. International Journal of Advanced Research in Artificial Intelligence, 4, 26–33.
Suzuki, C. T. N., Gomes, J. F., Falcao, A. X., Papa, J. P., & Hoshino‐Shimizu, S. (2013). Automatic segmentation and classification of human intestinal parasites from microscopy images. IEEE Transactions on Biomedical Engineering, 60, 803–812.
Avci, D., & Varol, A. (2009). An expert diagnosis system for classification of human parasite eggs based on multi‐class SVM. Expert Systems with Applications, 36, 43–48.
Dogantekin, E., Yilmaz, M., Dogantekin, A., Avci, E., & Sengur, A. (2008). A robust technique based on invariant moments—ANFIS for recognition of human parasite eggs in microscopic images. Expert Systems with Applications, 35, 728–738.
Löffler, C., Reeb, L., Dzibela, D., Marzilger, R., Witt, N., Eskofier, B. M., & Mutschler, C. (2021). Deep siamese metric learning: A highly scalable approach to searching unordered sets of trajectories. ACM Transactions on Intelligent Systems and Technology, 13, 1–23. https://doi.org/10.1145/3465057.
Maroju, R. G., Choudhari, S. G., Shaikh, M. K., Borkar, S. K., & Mendhe, H. (2023). Application of artificial intelligence in the management of drinking water: A narrative review. Cureus, 15, e49344.
Morris, R., & Wang, S. (2024). Building a pathway to One Health surveillance and response in Asian countries. Science in One Health, 3, 100067.
Hill, R., Stentiford, G. D., Walker, D. I., Baker‐Austin, C., Ward, G., Maskrey, B. H., van Aerle, R., Verner‐Jeffreys, D., Peeler, E., & Bass, D. (2024). Realising a global One Health disease surveillance approach: Insights from wastewater and beyond. Nature Communications, 15, 5324.
Cucunubá, Z. M., Gutiérrez‐Romero, S. A., Ramírez, J.‐D., Velásquez‐Ortiz, N., Ceccarelli, S., Parra‐Henao, G., Henao‐Martínez, A. F., Rabinovich, J., Basáñez, M.‐G., Nouvellet, P., & Abad‐Franch, F. (2024). The epidemiology of Chagas disease in the Americas. The Lancet Regional Health—Americas, 37, 100881.
CDC. (2024). American Trypanosomiasis. https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.html.
Alanis, E., Romero, G., Alvarez, L., Martinez, C. C., & Basombrio, M. A. (2004). Optical detection of Trypanosoma cruzi in blood samples for diagnosis purpose. In Proceedings of SPIE 5622, 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications (pp. 24–28). Proc. SPIE 5622.
Soberanis‐Mukul, R., Uc‐Cetina, V., Brito‐Loeza, C., & Ruiz‐Piña, H. (2013). An automatic algorithm for the detection of Trypanosoma cruzi parasites in blood sample images. Computer Methods and Programs in Biomedicine, 112, 633–639.
Uc‐Cetina, V., Brito‐Loeza, C., & Ruiz‐Piña, H. (2015). Chagas parasite detection in blood images using AdaBoost. Computational and Mathematical Methods in Medicine, 2015, 139681.
Lakshmi, V. (2016). Chaotic cuckoo search and Kapur/Tsallis approach in segmentation of T. cruzi from blood smear images. International Journal of Computer Science and Information Security, 14, 51–56.
Morais, M. C. C., Silva, D., Milagre, M. M., de Oliveira, M. T., Pereira, T., Silva, J. S., Costa, L. da F., Minoprio, P., Junior, R. M. C., Gazzinelli, R., de Lana, M., & Nakaya, H. I. (2022). Automatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone images. PeerJ, 10, e13470.
Pereira, A. S., Mazza, L. O., Pinto, P. C. C., Gomes, J. G. R. C., Nedjah, N., Vanzan, D. F., Pyrrho, A. S., & Soares, J. G. M. (2022). Deep convolutional neural network applied to Trypanosoma cruzi detection in blood samples. International Journal of Bio‐Inspired Computation, 19, 1.
Ojeda‐Pat, A., Martin‐Gonzalez, A., Brito‐Loeza, C., Ruiz‐Piña, H., & Ruz‐Suarez, D. (2022). Effective residual convolutional neural network for Chagas disease parasite segmentation. Medical & Biological Engineering & Computing, 60, 1099–1110.
Rada, L., Kumar, P., Martin‐Gonzalez, A., & Brito‐Loeza, C. (2024). Chagas parasite classification in blood sample images using different machine learning architectures. Medical & Biological Engineering & Computing, 62, 195–206.
Romero, G. G., Monaldi, A. C., & Alanís, E. E. (2012). Digital holographic microscopy for detection of Trypanosoma cruzi parasites in fresh blood mounts. Optics Communications, 285, 1613–1618.
Takagi, Y., Nosato, H., Doi, M., Furukawa, K., & Sakanashi, H. (2019). Development of a motion‐based cell‐counting system for Trypanosoma parasite using a pattern recognition approach. BioTechniques, 66, 179–185.
Martins, G. L., Ferreira, D. S., & Ramalho, G. L. B. (2021). Collateral motion saliency‐based model for Trypanosoma cruzi detection in dye‐free blood microscopy. Computers in Biology and Medicine, 132, 104220.
Martins, G. L., Ferreira, D. S., Carneiro, C. M., & Bianchi, A. G. C. (2023). Trypanosoma cruzi detection using LSTM convolutional autoencoder. In Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023) (pp. 443–454). Sociedade Brasileira de Computação—SBC.
Martins, G. L., Ferreira, D. S., Carneiro, C. M., Nogueira‐Paiva, N. C., & Bianchi, A. G. C. (2024). Trajectory‐driven computational analysis for element characterization in Trypanosoma cruzi video microscopy. PLOS ONE, 19, e0304716‐.
Nohara, L. L., Lema, C., Bader, J. O., Aguilera, R. J., & Almeida, I. C. (2010). High‐content imaging for automated determination of host‐cell infection rate by the intracellular parasite Trypanosoma cruzi. Parasitology International, 59, 565–570.
Noguera, J. L. V., Ayala, H. L., Schaerer, C. E., & Rolón, M. (2013). Mathematical morphology for counting Trypanosoma cruzi amastigotes. In 2013 XXXIX Latin American Computing Conference (CLEI) (pp. 1–12). IEEE.
Moon, S., Siqueira‐Neto, J. L., Moraes, C. B., Yang, G., Kang, M., Freitas‐Junior, L. H., & Hansen, M. A. E. (2014). An image‐based algorithm for precise and accurate high throughput assessment of drug activity against the human parasite Trypanosoma cruzi. PLOS ONE, 9, e87188.
de Souza Relli, C., Facon, J., Ayala, H. L., & De Souza Britto, A. (2017). Automatic counting of trypanosomatid amastigotes in infected human cells. Computers in Biology and Medicine, 89, 222–235.
Sanchez‐Patiño, N., Toriz‐Vazquez, A., Hevia‐Montiel, N., & Perez‐Gonzalez, J. (2021). Convolutional neural networks for Chagas’ parasite detection in histopathological images. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2732–2735). IEEE.
Hevia‐Montiel, N., Haro, P., Guillermo‐Cordero, L., & Perez‐Gonzalez, J. (2023). Deep learning–based segmentation of Trypanosoma cruzi nests in histopathological images. Electronics, 12, 4144. https://doi.org/10.3390/electronics12194144.
Kittichai, V., Sompong, W., Kaewthamasorn, M., Sasisaowapak, T., Naing, K. M., Tongloy, T., Chuwongin, S., Thanee, S., & Boonsang, S. (2024). A novel approach for identification of zoonotic trypanosome utilizing deep metric learning and vector database‐based image retrieval system. Heliyon, 10, e30643.
Kittichai, V., Kaewthamasorn, M., Thanee, S., Sasisaowapak, T., Naing, K. M., Jomtarak, R., Tongloy, T., Chuwongin, S., & Boonsang, S. (2023). Superior auto‐identification of trypanosome parasites by using a hybrid deep‐learning model. Journal of Visualized Experiments: JoVE, 200, e65557.
CDC. (2024). African trypanosomiasis. https://www.cdc.gov/dpdx/trypanosomiasisafrican/index.html.
Crilly, N. P., & Mugnier, M. R. (2021). Thinking outside the blood: Perspectives on tissue‐resident Trypanosoma brucei. PLOS Pathogens, 17, e1009866.
Capewell, P., Cren‐Travaillé, C., Marchesi, F., Johnston, P., Clucas, C., Benson, R. A., Gorman, T.‐A., Calvo‐Alvarez, E., Crouzols, A., Jouvion, G., Jamonneau, V., Weir, W., Stevenson, M. L., O'Neill, K., Cooper, A., Swar, N. K., Bucheton, B., Ngoyi, D. M., Garside, P., … MacLeod, A. (2016). The skin is a significant but overlooked anatomical reservoir for vector‐borne African trypanosomes. eLife, 5, e17716.
Krüger, T., Schuster, S., & Engstler, M. (2018). Beyond blood: African trypanosomes on the move. Trends in Parasitology, 34, 1056–1067.
Myburgh, E., Coles, J. A., Ritchie, R., Kennedy, P. G. E., McLatchie, A. P., Rodgers, J., Taylor, M. C., Barrett, M. P., Brewer, J. M., & Mottram, J. C. (2013). In vivo imaging of trypanosome‐brain interactions and development of a rapid screening test for drugs against CNS stage trypanosomiasis. PLOS Neglected Tropical Diseases, 7, e2384.
Beaver, A. K., Keneskhanova, Z., Cosentino, R. O., Weiss, B. L., Awuoche, E. O., Smallenberger, G. M., Buenconsejo, G. Y., Crilly, N. P., Smith, J. E., Hakim, J. M. C., Zhang, B., Bobb, B., Rijo‐Ferreira, F., Figueiredo, L. M., Aksoy, S., Siegel, T. N., & Mugnier, M. R. (2024). Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei. Nature, 636, 430–437.
De Niz, M., Brás, D., Ouarné, M., Pedro, M., Nascimento, A. M., Henao Misikova, L., Franco, C. A., & Figueiredo, L. M. (2021). Organotypic endothelial adhesion molecules are key for Trypanosoma brucei tropism and virulence. Cell Reports, 36, 109741.
Trindade, S., De Niz, M., Costa‐Sequeira, M., Bizarra‐Rebelo, T., Bento, F., Dejung, M., Narciso, M. V., López‐Escobar, L., Ferreira, J., Butter, F., Bringaud, F., Gjini, E., & Figueiredo, L. M. (2022). Slow growing behavior in African trypanosomes during adipose tissue colonization. Nature Communications, 13, 7548.
Trindade, S., Rijo‐Ferreira, F., Carvalho, T., Pinto‐Neves, D., Guegan, F., Aresta‐Branco, F., Bento, F., Young, S. A., Pinto, A., Van Den Abbeele, J., Ribeiro, R. M., Dias, S., Smith, T. K., & Figueiredo, L. M. (2016). Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host & Microbe, 19, 837–848.
Rijo‐Ferreira, F., & Takahashi, J. S. (2020). Sleeping sickness: A tale of two clocks. Frontiers in Cellular and Infection Microbiology, 10, 525097. https://doi.org/10.3389/fcimb.2020.525097.
Rijo‐Ferreira, F., Takahashi, J. S., & Figueiredo, L. M. (2017). Circadian rhythms in parasites. PLOS Pathogens, 13, e1006590.
Silva Pereira, S., Brás, D., Porqueddu, T., Nascimento, A. M., & De Niz, M. (2023). Investigation of Trypanosoma‐induced vascular damage sheds insights into Trypanosoma vivax sequestration. The Cell Surface, 10, 100113.
Silva Pereira, S., Trindade, S., De Niz, M., & Figueiredo, L. M. (2019). Tissue tropism in parasitic diseases. Open Biology, 9, 190036.
Silva Pereira, S., De Niz, M., Serre, K., Ouarné, M., Coelho, J. E., Franco, C. A., & Figueiredo, L. M. (2022). Immunopathology and Trypanosoma congolense parasite sequestration cause acute cerebral trypanosomiasis. eLife, 11, e77440.
Dyer, N. A., Rose, C., Ejeh, N. O., & Acosta‐Serrano, A. (2013). Flying tryps: Survival and maturation of trypanosomes in tsetse flies. Trends in Parasitology, 29, 188–196.
Briggs, E. M., Marques, C. A., Oldrieve, G. R., Hu, J., Otto, T. D., & Matthews, K. R. (2023). Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single‐cell transcriptomics. eLife, 12, e86325.
Machado, H., Temudo, A., & De Niz, M. (2023). The lymphatic system favours survival of a unique T. brucei population. Biology Open, 12, bio059992.
Krüger, T., Schuster, S., & Engstler, M. (2018). Beyond blood: african trypanosomes on the move. Trends in Parasitology, 34, 1056–1067.
Anzaku, E. T., Mohammed, M. A., Ozbulak, U., Won, J., Hong, H., Krishnamoorthy, J., Van Hoecke, S., Magez, S., Van Messem, A., & De Neve, W. (2023). Tryp: A dataset of microscopy images of unstained thick blood smears for trypanosome detection. Scientific Data, 10, 716.
Jung, T., Anzaku, E. T., Özbulak, U., Magez, S., Van Messem, A., & De Neve, W. (2020). Automatic detection of trypanosomosis in thick blood smears using image pre‐processing and deep learning. In Intelligent Human Computer Interaction: 12th International Conference, IHCI 2020, Daegu, South Korea, November 24–26, 2020, Proceedings, Part II (pp. 254–266). Springer‐Verlag.
Jomtarak, R., Kittichai, V., Kaewthamasorn, M., Thanee, S., Arnuphapprasert, A., Naing, K. M., Tongloy, T., Boonsang, S., & Chuwongin, S. (2023). Mobile bot application for identification of Trypanosoma evansi infection through thin‐blood film examination based on deep learning approach. In 2023 IEEE International Conference on Cybernetics and Innovations (ICCI) (pp. 1–7). IEEE.
CDC. (2024). Leishmaniasis. https://www.cdc.gov/dpdx/leishmaniasis/index.html.
Peters, N. C., Egen, J. G., Secundino, N., Debrabant, A., Kimblin, N., Kamhawi, S., Lawyer, P., Fay, M. P., Germain, R. N., & Sacks, D. (2008). In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science, 321, 970–974.
Jochim, R. C., & Teixeira, C. (2009). Leishmania commandeers the host inflammatory response through neutrophils. Trends in Parasitology, 25, 145–147.
Ritter, U., Frischknecht, F., & van Zandbergen, G. (2009). Are neutrophils important host cells for Leishmania parasites? Trends in Parasitology, 25, 505–510.
Ludolf, F., Ramos, F. F., & Coelho, E. A. F. (2023). Immunoproteomics and phage display in the context of leishmaniasis complexity. Frontiers in Immunology, 14, 1112894. https://doi.org/10.3389/fimmu.2023.1112894.
Leal, P., Ferro, L., Marques, M., Romão, S., Cruz, T., Tomá, A. M., Castro, H., & Quelhas, P. (2012). Automatic assessment of Leishmania infection indexes on in vitro macrophage cell cultures. In A. Campilho, & M. Kamel (Eds.), Image analysis and recognition (pp. 432–439). Springer Berlin Heidelberg.
Ferro, L., Marques, M., Leal, P., Romão, S., Cruz, T., Tomás, A. M., Castro, H., & Quelhas, P. (2013). Automatic spectral unmixing of Leishmania infection macrophage cell cultures image. In M. Kamel, & A. Campilho (Eds.), Image analysis and recognition (pp. 621–629). Springer Berlin Heidelberg.
Nogueira, P. A. (2013). Determining leishmania infection levels by automatic analysis of microscopy images. MSc thesis, arXiv:1311.2621.
Ouertani, F., Amiri, H., Bettaib, J., Yazidi, R., & Ben Salah, A. (2014). Adaptive automatic segmentation of leishmaniasis parasite in indirect immunofluorescence images. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4731–4734). IEEE.
Neves, J. C., Castro, H., Tomás, A., Coimbra, M., & Proença, H. (2014). Detection and separation of overlapping cells based on contour concavity for Leishmania images. Cytometry Part A, 85, 491–500.
Ouertani, F., Amiri, H., Bettaib, J., Yazidi, R., & Ben Salah, A. (2016). Hybrid segmentation of fluorescent leschmania‐infected images using a watersched and combined region merging based method. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3910–3913). IEEE.
Gomes‐Alves, A. G., Maia, A. F., Cruz, T., Castro, H., & Tomás, A. M. (2018). Development of an automated image analysis protocol for quantification of intracellular forms of Leishmania spp. PLOS ONE, 13, e0201747.
Yazdanparast, E., Dos Anjos, A., Garcia, D., Loeuillet, C., Shahbazkia, H. R., & Vergnes, B. (2014). INsPECT, an open‐source and versatile software for automated quantification of (Leishmania) intracellular parasites. PLOS Neglected Tropical Diseases, 8, e2850.
Farahi, M., Rabbani, H., Talebi, A., Sarrafzadeh, O., & Ensafi, S. (2015). Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method. In Proceedings of the SPIE (p. 98170K). SPIE.
Zhang, C., Jiang, H., Liu, W., Li, J., Tang, S., Juhas, M., & Zhang, Y. (2022). Correction of out‐of‐focus microscopic images by deep learning. Computational and Structural Biotechnology Journal, 20, 1957–1966.
Zare, M., Akbarialiabad, H., Parsaei, H., Asgari, Q., Alinejad, A., Bahreini, M. S., Hosseini, S. H., Ghofrani‐Jahromi, M., Shahriarirad, R., Amirmoezzi, Y., Shahriarirad, S., Zeighami, A., & Abdollahifard, G. (2022). A machine learning‐based system for detecting leishmaniasis in microscopic images. BMC Infectious Diseases, 22, 48.
Górriz, M., Aparicio, A., Raventós, B., Vilaplana, V., Sayrol, E., & López‐Codina, D. (2018). Leishmaniasis parasite segmentation and classification using deep learning. In F. J. Perales, & J. Kittler (Eds.), Articulated motion and deformable objects (pp. 53–62). Springer International Publishings.
Juez‐Castillo, G., Valencia‐Vidal, B., Orrego, L. M., Cabello‐Donayre, M., Montosa‐Hidalgo, L., & Pérez‐Victoria, J. M. (2024). FiCRoN, a deep learning‐based algorithm for the automatic determination of intracellular parasite burden from fluorescence microscopy images. Medical Image Analysis, 91, 103036.
Sadeghi, A., Sadeghi, M., Fakhar, M., Zakariaei, Z., Sadeghi, M., & Bastani, R. (2024). A deep learning‐based model for detecting Leishmania amastigotes in microscopic slides: A new approach to telemedicine. BMC Infectious Diseases, 24, 551.
Tekle, E., Dese, K., Girma, S., Adissu, W., Krishnamoorthy, J., & Kwa, T. (2024). DeepLeish: A deep learning based support system for the detection of Leishmaniasis parasite from Giemsa‐stained microscope images. BMC Medical Imaging, 24, 152.
Abdelmula, A. M., Mirzaei, O., Güler, E., & Süer, K. (2024). Assessment of deep learning models for cutaneous Leishmania parasite diagnosis using microscopic images. Diagnostics, 14, 12. https://doi.org/10.3390/diagnostics14010012.
Schmid, M., Dufner, B., Dürk, J., Bedal, K., Stricker, K., Prokoph, L. A., Koch, C., Wege, A. K., Zirpel, H., van Zandbergen, G., Ecker, R., Boghiu, B., & Ritter, U. (2015). An emerging approach for parallel quantification of intracellular protozoan parasites and host cell characterization using TissueFAXS cytometry. PLOS ONE, 10, e0139866‐.
Wei, L., Barrie, U., Aloisio, G. M., Khuong, F. T. H., Arang, N., Datta, A., Kaushansky, A., & Wetzel, D. M. (2024). Using machine learning to dissect host kinases required for Leishmania internalization and development. Molecular and Biochemical Parasitology, 260, 111651.
Arce Lopera, C., Diaz, J., & Quintero, L. (2021). Presumptive diagnosis of cutaneous leishmaniasis. Frontiers in Health Informatics, 10, 75.
Larios, G., Ribeiro, M., Arruda, C., Oliveira, S. L., Canassa, T., Baker, M. J., Marangoni, B., Ramos, C., & Cena, C. (2021). A new strategy for canine visceral leishmaniasis diagnosis based on FTIR spectroscopy and machine learning. Journal of Biophotonics, 14, e202100141.
Chakkumpulakkal Puthan Veettil, T., Duffin, R. N., Roy, S., Vongsvivut, J., Tobin, M. J., Martin, M., Adegoke, J. A., Andrews, P. C., & Wood, B. R. (2023). Synchrotron‐infrared microspectroscopy of live Leishmania major infected macrophages and isolated Promastigotes and Amastigotes. Analytical Chemistry, 95, 3986–3995.
Barajas‐Solano, C., Muñoz, B., Chicano‐Gálvez, E., Escobar, P., & Mejía‐Ospino, E. (2022). Discriminator for cutaneous leishmaniasis using MALDI‐MSI in a murine model. Journal of the American Society for Mass Spectrometry, 33, 952–960.
Saraiva, B. M., Cunha, I., Brito, A. D., Follain, G., Portela, R., Haase, R., Pereira, P. M., Jacquemet, G., & Henriques, R. (2025). Efficiently accelerated bioimage analysis with NanoPyx, a Liquid Engine‐powered Python framework. Nature Methods, 22, 283–286. https://doi.org/10.1038/s41592‐024‐02562‐6.
Cunha, I., Latron, E., Bauer, S., Sage, D., & Griffié, J. (2024). Machine learning in microscopy—Insights, opportunities and challenges. Journal of Cell Science, 137, jcs262095.
Bai, J., Cao, L., Mosbach, S., Akroyd, J., Lapkin, A. A., & Kraft, M. (2022). From platform to knowledge graph: Evolution of laboratory automation. JACS Au, 2, 292–309.
Harb, O. S., McDowell, M. A., & Roos, D. S. (2024). VEuPathDB resources: A platform for free online data exploration, integration, and analysis. In J. C. Setubal, P. F. Stadler, & J. Stoye (Eds.), Comparative genomics: Methods and protocols (pp. 573–586). Springer US.
Alvarez‐Jarreta, J., Amos, B., Aurrecoechea, C., Bah, S., Barba, M., Barreto, A., Basenko, E. Y., Belnap, R., Blevins, A., Böhme, U., Brestelli, J., Brown, S., Callan, D., Campbell, L. I., Christophides, G. K., Crouch, K., Davison, H. R., DeBarry, J. D., Doherty, R., … Zheng, J. (2024). VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center in 2023. Nucleic Acids Research, 52, D808–D816.
Amos, B., Aurrecoechea, C., Barba, M., Barreto, A., Basenko, E. Y., Bażant, W., Belnap, R., Blevins, A. S., Böhme, U., Brestelli, J., Brunk, B. P., Caddick, M., Callan, D., Campbell, L., Christensen, M. B., Christophides, G. K., Crouch, K., Davis, K., DeBarry, J., … Zheng, J. (2022). VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Research, 50, D898–D911.
Fernandez‐Prada, C., Moretti, N. S., & do Monte‐Neto, R. L. (2025). Critical loss: The effects of VEuPathDB defunding on global health. The Lancet Microbe, 6, 100980. https://doi.org/10.1016/j.lanmic.2024.100980.
Ellenberg, J., Swedlow, J. R., Barlow, M., Cook, C. E., Sarkans, U., Patwardhan, A., Brazma, A., & Birney, E. (2018). A call for public archives for biological image data. Nature Methods, 15, 849–854.
Bagheri, H., Severin, A. J., & Rajan, H. (2020). Detecting and correcting misclassified sequences in the large‐scale public databases. Bioinformatics, 36, 4699–4705.
Bagheri, N., Carpenter, A. E., Lundberg, E., Plant, A. L., & Horwitz, R. (2022). The new era of quantitative cell imaging—Challenges and opportunities. Molecular Cell, 82, 241–247.
Hohlbein, J., Diederich, B., Marsikova, B., Reynaud, E. G., Holden, S., Jahr, W., Haase, R., & Prakash, K. (2022). Open microscopy in the life sciences: Quo vadis? Nature Methods, 19, 1020–1025.
Williams, E., Moore, J., Li, S. W., Rustici, G., Tarkowska, A., Chessel, A., Leo, S., Antal, B., Ferguson, R. K., Sarkans, U., Brazma, A., Carazo Salas, R. E., & Swedlow, J. R. (2017). Image Data Resource: A bioimage data integration and publication platform. Nature Methods, 14, 775–781.
Hartley, M., Kleywegt, G. J., Patwardhan, A., Sarkans, U., Swedlow, J. R., & Brazma, A. (2022). The BioImage Archive—Building a home for life‐sciences microscopy data. Journal of Molecular Biology, 434, 167505.
Cook, C. E., Stroe, O., Cochrane, G., Birney, E., & Apweiler, R. (2020). The European Bioinformatics Institute in 2020: building a global infrastructure of interconnected data resources for the life sciences. Nucleic Acids Research, 48, D17–D23.
Ouyang, W., Beuttenmueller, F., Gómez‐de‐Mariscal, E., Pape, C., Burke, T., Garcia‐López‐de‐Haro, C., Russell, C., Moya‐Sans, L., de‐la‐Torre‐Gutiérrez, C., Schmidt, D., Kutra, D., Novikov, M., Weigert, M., Schmidt, U., Bankhead, P., Jacquemet, G., Sage, D., Henriques, R., Muñoz‐Barrutia, A., … Kreshuk, A. (2022). BioImage model zoo: A community‐driven resource for accessible deep learning in bioimage analysis. bioRxiv, 2022.06.07.495102.
Anton, L., Cobb, D. W., & Ho, C.‐M. (2022). Structural parasitology of the malaria parasite Plasmodium falciparum. Trends in Biochemical Sciences, 47, 149–159.
Horjales, S., Sena, F., & Francia, M. E. (2025). Ultrastructure expansion microscopy: Enlarging our perspective on apicomplexan cell division. Journal of Microscopy, 1–16. https://doi.org/10.1111/jmi.13387.
Guizetti, J. (2025). Imaging malaria parasites across scales and time. Journal of Microscopy, n/a. https://doi.org/10.1111/jmi.13384.
Chen, K., & Barnard, A. S. (2024). Advancing electron microscopy using deep learning. Journal of Physics: Materials, 7, 022001.
Nešić, N., Heiligenstein, X., Zopf, L., Blüml, V., Keuenhof, K. S., Wagner, M., Höög, J. L., Qi, H., Li, Z., Tsaramirsis, G., Peddie, C. J., Stojmenović, M., & Walter, A. (2024). Automated segmentation of cell organelles in volume electron microscopy using deep learning. Microscopy Research and Technique, 87, 1718–1732.
Buchholz, T.‐O., Jordan, M., Pigino, G., & Jug, F. (2019). Cryo‐CARE: Content‐aware image restoration for cryo‐transmission electron microscopy data. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (pp. 502–506). IEEE.
Buchholz, T.‐O., Krull, A., Shahidi, R., Pigino, G., Jékely, G., & Jug, F. (2019). Chapter 13—Content‐aware image restoration for electron microscopy. In T. Müller‐Reichert, & G. Pigino (Eds.) Methods in cell biology (pp. 277–289). Academic Press.
Zinchenko, V., Hugger, J., Uhlmann, V., Arendt, D., & Kreshuk, A. (2023). MorphoFeatures for unsupervised exploration of cell types, tissues, and organs in volume electron microscopy. eLife, 12, e80918.
Vergara, H. M., Pape, C., Meechan, K. I., Zinchenko, V., Genoud, C., Wanner, A. A., Mutemi, K. N., Titze, B., Templin, R. M., Bertucci, P. Y., Simakov, O., Dürichen, W., Machado, P., Savage, E. L., Schermelleh, L., Schwab, Y., Friedrich, R. W., Kreshuk, A., Tischer, C., & Arendt, D. (2021). Whole‐body integration of gene expression and single‐cell morphology. Cell, 184, 4819–4837.e22.
Conrad, R., & Narayan, K. (2023). Instance segmentation of mitochondria in electron microscopy images with a generalist deep learning model trained on a diverse dataset. Cell Systems, 14, 58–71.e5.
Volpe, G., Wählby, C., Tian, L., Hecht, M., Yakimovich, A., Monakhova, K., Waller, L., Sbalzarini, I. F., Metzler, C. A., Xie, M., Zhang, K., Lenton, I. C. D., Rubinsztein‐Dunlop, H., Brunner, D., Bai, B., Ozcan, A., Midtvedt, D., Wang, H., Sladoje, N., … Bergman, J. (2023). Roadmap on deep learning for microscopy. ArXiv, arXiv:2303.03793v1.
de Haan, K., Zhang, Y., Zuckerman, J. E., Liu, T., Sisk, A. E., Diaz, M. F. P., Jen, K.‐Y., Nobori, A., Liou, S., Zhang, S., Riahi, R., Rivenson, Y., Wallace, W. D., & Ozcan, A. (2021). Deep learning‐based transformation of H&E stained tissues into special stains. Nature Communications, 12, 4884.
Rivenson, Y., Wang, H., Wei, Z., de Haan, K., Zhang, Y., Wu, Y., Günaydın, H., Zuckerman, J. E., Chong, T., Sisk, A. E., Westbrook, L. M., Wallace, W. D., & Ozcan, A. (2019). Virtual histological staining of unlabelled tissue‐autofluorescence images via deep learning. Nature Biomedical Engineering, 3, 466–477.
Rivenson, Y., Liu, T., Wei, Z., Zhang, Y., de Haan, K., & Ozcan, A. (2019). PhaseStain: The digital staining of label‐free quantitative phase microscopy images using deep learning. Light: Science & Applications, 8, 23.
Moshkov, N., Bornholdt, M., Benoit, S., Smith, M., McQuin, C., Goodman, A., Senft, R. A., Han, Y., Babadi, M., Horvath, P., Cimini, B. A., Carpenter, A. E., Singh, S., & Caicedo, J. C. (2024). Learning representations for image‐based profiling of perturbations. Nature Communications, 15, 1594.
Bray, M.‐A., Singh, S., Han, H., Davis, C. T., Borgeson, B., Hartland, C., Kost‐Alimova, M., Gustafsdottir, S. M., Gibson, C. C., & Carpenter, A. E. (2016). Cell Painting, a high‐content image‐based assay for morphological profiling using multiplexed fluorescent dyes. Nature Protocols, 11, 1757–1774.
Wang, Q., Akram, A. R., Dorward, D. A., Talas, S., Monks, B., Thum, C., Hopgood, J. R., Javidi, M., & Vallejo, M. (2024). Deep learning‐based virtual H& E staining from label‐free autofluorescence lifetime images. npj Imaging, 2, 17.
Tedeschi, G., Navarro, M. X., Scipioni, L., Sondhi, T. K., Prescher, J. A., & Digman, M. A. (2024). Monitoring macrophage polarization with gene expression reporters and bioluminescence phasor analysis. Chemical & Biomedical Imaging, 2, 765–774.
Narotamo, H., Silveira, M., & Franco, C. A. (2024). 3DVascNet: An automated software for segmentation and quantification of mouse vascular networks in 3D. Arteriosclerosis, Thrombosis, and Vascular Biology, 44, 1584–1600.
Schubert, M. C., Soyka, S. J., Tamimi, A., Maus, E., Schroers, J., Wißmann, N., Reyhan, E., Tetzlaff, S. K., Yang, Y., Denninger, R., Peretzke, R., Beretta, C., Drumm, M., Heuer, A., Buchert, V., Steffens, A., Walshon, J., McCortney, K., Heiland, S., … Venkataramani, V. (2024). Deep intravital brain tumor imaging enabled by tailored three‐photon microscopy and analysis. Nature Communications, 15, 7383.
Sturm, A., Amino, R., van de Sand, C., Regen, T., Retzlaff, S., Rennenberg, A., Krueger, A., Pollok, J.‐M., Menard, R., & Heussler, V. T. (2006). Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science, 313, 1287–1290.
De Niz, M., Brás, D., Ouarné, M., Pedro, M., Nascimento, A. M., Henao Misikova, L., Franco, C. A., & Figueiredo, L. M. (2021). Organotypic endothelial adhesion molecules are key for Trypanosoma brucei tropism and virulence. Cell Reports, 36, 109741. https://doi.org/10.1016/j.celrep.2021.109741.
Kaltenecker, D., Al‐Maskari, R., Negwer, M., Hoeher, L., Kofler, F., Zhao, S., Todorov, M., Rong, Z., Paetzold, J. C., Wiestler, B., Piraud, M., Rueckert, D., Geppert, J., Morigny, P., Rohm, M., Menze, B. H., Herzig, S., Berriel Diaz, M., & Ertürk, A. (2024). Virtual reality‐empowered deep‐learning analysis of brain cells. Nature Methods, 21, 1306–1315.
Heddergott, N., Krüger, T., Babu, S. B., Wei, A., Stellamanns, E., Uppaluri, S., Pfohl, T., Stark, H., & Engstler, M. (2012). Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream. PLOS Pathogens, 8, e1003023.
Hegge, S., Kudryashev, M., Smith, A., & Frischknecht, F. (2009). Automated classification of Plasmodium sporozoite movement patterns reveals a shift towards productive motility during salivary gland infection. Biotechnology Journal, 4, 903–913.
Liu, Z., Li, S., Anantha, P., Thanakornsombut, T., Wu, L., Chen, J., Tsuchiya, R., Tripathi, A. K., Chen, Y., & Barman, I. (2024). Plasmodium sporozoite shows distinct motility patterns in responses to three‐dimensional environments. iScience, 27, 110463. https://doi.org/10.1016/j.isci.2024.110463.
Maška, M., Ulman, V., Delgado‐Rodriguez, P., Gómez‐de‐Mariscal, E., Nečasová, T., Guerrero Peña, F. A., Ren, T. I., Meyerowitz, E. M., Scherr, T., Löffler, K., Mikut, R., Guo, T., Wang, Y., Allebach, J. P., Bao, R., Al‐Shakarji, N. M., Rahmon, G., Toubal, I. E., Palaniappan, K., … Ortiz‐de‐Solórzano, C. (2023). The cell tracking challenge: 10 years of objective benchmarking. Nature Methods, 20, 1010–1020.
Chai, B., Efstathiou, C., Yue, H., & Draviam, V. M. (2024). Opportunities and challenges for deep learning in cell dynamics research. Trends in Cell Biology, 34, 955–967.
Wen, C., Miura, T., Voleti, V., Yamaguchi, K., Tsutsumi, M., Yamamoto, K., Otomo, K., Fujie, Y., Teramoto, T., Ishihara, T., Aoki, K., Nemoto, T., Hillman, E. M. C., & Kimura, K. D. (2021). 3DeeCellTracker, a deep learning‐based pipeline for segmenting and tracking cells in 3D time lapse images. eLife, 10, e59187.
Zargari, A., Lodewijk, G. A., Mashhadi, N., Cook, N., Neudorf, C. W., Araghbidikashani, K., Hays, R., Kozuki, S., Rubio, S., Hrabeta‐Robinson, E., Brooks, A., Hinck, L., & Shariati, S. A. (2023). DeepSea is an efficient deep‐learning model for single‐cell segmentation and tracking in time‐lapse microscopy. Cell Reports Methods, 3, 100500.
Ershov, D., Phan, M.‐S., Pylvänäinen, J. W., Rigaud, S. U., Le Blanc, L., Charles‐Orszag, A., Conway, J. R. W., Laine, R. F., Roy, N. H., Bonazzi, D., Duménil, G., Jacquemet, G., & Tinevez, J.‐Y. (2021). Bringing TrackMate into the era of machine‐learning and deep‐learning. bioRxiv, 2021.09.03.458852.
Scherf, N., & Huisken, J. (2015). The smart and gentle microscope. Nature Biotechnology, 33, 815–818.
Carpenter, A. E., Cimini, B. A., & Eliceiri, K. W. (2023). Smart microscopes of the future. Nature Methods, 20, 962–964.
Conrad, C., Wünsche, A., Tan, T. H., Bulkescher, J., Sieckmann, F., Verissimo, F., Edelstein, A., Walter, T., Liebel, U., Pepperkok, R., & Ellenberg, J. (2011). Micropilot: automation of fluorescence microscopy–based imaging for systems biology. Nature Methods, 8, 246–249.
Mahecic, D., Stepp, W. L., Zhang, C., Griffié, J., Weigert, M., & Manley, S. (2022). Event‐driven acquisition for content‐enriched microscopy. Nature Methods, 19, 1262–1267.
Marcotti, S., Jones, M. L., Slater, T. J. A., & Barry, D. J. (2025). Enhancing research through image analysis workshops: Experiences and best practices. Microsc Res Tech, 88, 922–935. https://doi.org/10.1002/jemt.24769.
Sivagurunathan, S., Marcotti, S., Nelson, C. J., Jones, M. L., Barry, D. J., Slater, T. J. A., Eliceiri, K. W., & Cimini, B. A. (2024). Bridging imaging users to imaging analysis—A community survey. Journal of Microscopy, 296, 199–213.
MicroscopyDB. (2024). MicroscopyDB. https://microscopydb.io/.
Wright, G. D., Thompson, K. A., Reis, Y., Bischof, J., Hockberger, P. E., Itano, M. S., Yen, L., Adelodun, S. T., Bialy, N., Brown, C. M., Chaabane, L., Chew, T.‐L., Chitty, A. I., Cordelières, F. P., De Niz, M., Ellenberg, J., Engelbrecht, L., Fabian‐Morales, E., Fazeli, E., … Keppler, A. (2024). Recognising the importance and impact of Imaging Scientists: Global guidelines for establishing career paths within core facilities. Journal of Microscopy, 294, 397–410.
Cimini, B. A., Bankhead, P., D'Antuono, R., Fazeli, E., Fernandez‐Rodriguez, J., Fuster‐Barceló, C., Haase, R., Jambor, H. K., Jones, M. L., Jug, F., Klemm, A. H., Kreshuk, A., Marcotti, S., Martins, G. G., McArdle, S., Miura, K., Muñoz‐Barrutia, A., Murphy, L. C., Nelson, M. S., … Eliceiri, K. W. (2024). The crucial role of bioimage analysts in scientific research and publication. Journal of Cell Science, 137, jcs262322.
Cimini, B. A., Tromans‐Coia, C., Stirling, D. R., Sivagurunathan, S., Senft, R. A., Ryder, P. V, Miglietta, E., Llanos, P., Jamali, N., Diaz‐Rohrer, B., Dasgupta, S., Cruz, M., Weisbart, E., & Carpenter, A. E. (2024). A postdoctoral training program in bioimage analysis. Molecular Biology of the Cell, 35, pe2.
Jones, T. R., Kang, I. H., Wheeler, D. B., Lindquist, R. A., Papallo, A., Sabatini, D. M., Golland, P., & Carpenter, A. E. (2008). CellProfiler Analyst: Data exploration and analysis software for complex image‐based screens. BMC Bioinformatics, 9, 482.
Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J., Golland, P., & Sabatini, D. M. (2006). CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biology, 7, R100.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.
Schindelin, J., Arganda‐Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.‐Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open‐source platform for biological‐image analysis. Nature Methods, 9, 676–682.
Rubens, U., Mormont, R., Paavolainen, L., Bäcker, V., Pavie, B., Scholz, L. A., Michiels, G., Maška, M., Ünay, D., Ball, G., Hoyoux, R., Vandaele, R., Golani, O., Stanciu, S. G., Sladoje, N., Paul‐Gilloteaux, P., Marée, R., & Tosi, S. (2020). BIAFLOWS: A collaborative framework to reproducibly deploy and benchmark bioimage analysis workflows. Patterns, 1, 100040.
von Chamier, L., Laine, R. F., Jukkala, J., Spahn, C., Krentzel, D., Nehme, E., Lerche, M., Hernández‐Pérez, S., Mattila, P. K., Karinou, E., Holden, S., Solak, A. C., Krull, A., Buchholz, T.‐O., Jones, M. L., Royer, L. A., Leterrier, C., Shechtman, Y., Jug, F., … Henriques, R. (2021). Democratising deep learning for microscopy with ZeroCostDL4Mic. Nature Communications, 12, 2276.
Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E., & Zimmer, C. (2019). ImJoy: An open‐source computational platform for the deep learning era. Nature Methods, 16, 1199–1200.
Bannon, D., Moen, E., Schwartz, M., Borba, E., Kudo, T., Greenwald, N., Vijayakumar, V., Chang, B., Pao, E., Osterman, E., Graf, W., & Van Valen, D. (2021). DeepCell Kiosk: Scaling deep learning–enabled cellular image analysis with Kubernetes. Nature Methods, 18, 43–45.
Gómez‐de‐Mariscal, E., Grobe, H., Pylvänäinen, J. W., Xénard, L., Henriques, R., Tinevez, J.‐Y., & Jacquemet, G. (2024). CellTracksColab is a platform that enables compilation, analysis, and exploration of cell tracking data. PLOS Biology, 22, e3002740.
Hidalgo‐Cenalmor, I., Pylvänäinen, J. W., Ferreira, M. G., Russell, C. T., Saguy, A., Arganda‐Carreras, I., Shechtman, Y., Jacquemet, G., Henriques, R., & Gómez‐de‐Mariscal, E., AI4Life Horizon Europe Program Consortium. (2024). DL4MicEverywhere: Deep learning for microscopy made flexible, shareable and reproducible. Nature Methods, 21, 925–927.
Barberis, A., Aerts, H. J. W. L., & Buffa, F. M. (2024). Robustness and reproducibility for AI learning in biomedical sciences: RENOIR. Scientific Reports, 14, 1933.
Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452–454.
Marqués, G., Pengo, T., & Sanders, M. A. (2020). Imaging methods are vastly underreported in biomedical research. eLife, 9, e55133.
Ball, P. (2023). Is AI leading to a reproducibility crisis in science? Nature, 624, 22–25.
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.‐W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018.
Heddleston, J. M., Aaron, J. S., Khuon, S., & Chew, T.‐L. (2021). Correction: A guide to accurate reporting in digital image acquisition—Can anyone replicate your microscopy data? Journal of Cell Science, 134, jcs258933.
Aaron, J., & Chew, T.‐L. (2021). A guide to accurate reporting in digital image processing—Can anyone reproduce your quantitative analysis? Journal of Cell Science, 134, jcs254151.
Schmied, C., Nelson, M. S., Avilov, S., Bakker, G.‐J., Bertocchi, C., Bischof, J., Boehm, U., Brocher, J., Carvalho, M. T., Chiritescu, C., Christopher, J., Cimini, B. A., Conde‐Sousa, E., Ebner, M., Ecker, R., Eliceiri, K., Fernandez‐Rodriguez, J., Gaudreault, N., Gelman, L., … Jambor, H. K. (2024). Community‐developed checklists for publishing images and image analyses. Nature Methods, 21, 170–181.
Boehm, U., Nelson, G., Brown, C. M., Bagley, S., Bajcsy, P., Bischof, J., Dauphin, A., Dobbie, I. M., Eriksson, J. E., Faklaris, O., Fernandez‐Rodriguez, J., Ferrand, A., Gelman, L., Gheisari, A., Hartmann, H., Kukat, C., Laude, A., Mitkovski, M., Munck, S., … Nitschke, R. (2021). QUAREP‐LiMi: A community endeavor to advance quality assessment and reproducibility in light microscopy. Nature Methods, 18, 1423–1426.
Nelson, G., Boehm, U., Bagley, S., Bajcsy, P., Bischof, J., Brown, C. M., Dauphin, A., Dobbie, I. M., Eriksson, J. E., Faklaris, O., Fernandez‐Rodriguez, J., Ferrand, A., Gelman, L., Gheisari, A., Hartmann, H., Kukat, C., Laude, A., Mitkovski, M., Munck, S., … Nitschke, R. (2021). QUAREP‐LiMi: A community‐driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy. Journal of Microscopy, 284, 56–73.
Weitere Informationen
Microscopy and image analysis play a vital role in parasitology research; they are critical for identifying parasitic organisms and elucidating their complex life cycles. Despite major advancements in imaging and analysis, several challenges remain. These include the integration of interdisciplinary data; information derived from various model organisms; and data acquired from clinical research. In our view, artificial intelligence-with the latest advances in machine and deep learning-holds enormous potential to address many of these challenges. This review addresses how artificial intelligence, machine learning and deep learning have been used in the field of parasitology-mainly focused on Apicomplexan, Diplomonad, and Kinetoplastid groups. We explore how gaps in our understanding could be filled by AI in future parasitology research and diagnosis in the field. Moreover, it addresses challenges and limitations currently faced in implementing and expanding the use of artificial intelligence across biomedical fields. The necessary increased collaboration between biologists and computational scientists will facilitate understanding, development, and implementation of the latest advances for both scientific discovery and clinical impact. Current and future AI tools hold the potential to revolutionise parasitology and expand One Health principles.
(© 2025 The Author(s). Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.)