Treffer: Melatonin combined with static magnetic field acquire better protective effects on bone mass and bone strength in osteoporosis induced by ovariectomy in rats.

Title:
Melatonin combined with static magnetic field acquire better protective effects on bone mass and bone strength in osteoporosis induced by ovariectomy in rats.
Authors:
Lu H; Department of Orthopedics, The First People's Hospital of Chuzhou City, Clinic Medical College of Anhui Medical University, Chuzhou, China., Gan N; Department of Laboratory, The First People's Hospital of Chuzhou City, Clinic Medical College of Anhui Medical University, Chuzhou, China., Du J; Department of Orthopedics, The First People's Hospital of Chuzhou City, Clinic Medical College of Anhui Medical University, Chuzhou, China., Xue T; Department of Orthopedics, The First People's Hospital of Chuzhou City, Clinic Medical College of Anhui Medical University, Chuzhou, China., Hou D; Department of Orthopedics, The First People's Hospital of Chuzhou City, Clinic Medical College of Anhui Medical University, Chuzhou, China., Lu C; Department of Orthopedics, The First People's Hospital of Chuzhou City, Clinic Medical College of Anhui Medical University, Chuzhou, China.
Source:
Annals of medicine [Ann Med] 2025 Dec; Vol. 57 (1), pp. 2512627. Date of Electronic Publication: 2025 Jun 02.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Informa Healthcare Country of Publication: England NLM ID: 8906388 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2060 (Electronic) Linking ISSN: 07853890 NLM ISO Abbreviation: Ann Med Subsets: MEDLINE
Imprint Name(s):
Publication: London : Informa Healthcare
Original Publication: Helsinki : Finnish Medical Society Duodecim, 1989-
References:
Front Pharmacol. 2022 Oct 07;13:975181. (PMID: 36278157)
J Biomater Appl. 2016 Feb;30(7):952-60. (PMID: 26482573)
Prog Biophys Mol Biol. 2023 Jan;177:168-180. (PMID: 36462638)
Biomolecules. 2022 Dec 06;12(12):. (PMID: 36551252)
Cells. 2022 Oct 20;11(20):. (PMID: 36291164)
J Bone Miner Metab. 2021 Nov;39(6):934-943. (PMID: 34189659)
J Neuroinflammation. 2019 Nov 27;16(1):239. (PMID: 31775794)
Mol Med. 2022 Jun 28;28(1):75. (PMID: 35764958)
Int J Nanomedicine. 2019 Jul 05;14:4911-4929. (PMID: 31456637)
Electromagn Biol Med. 2018;37(2):76-83. (PMID: 29617158)
Front Pharmacol. 2020 May 19;11:667. (PMID: 32508637)
Prog Biophys Mol Biol. 2014 Jan;114(1):14-24. (PMID: 24239500)
Int J Mol Sci. 2017 Oct 18;18(10):. (PMID: 29057846)
Bone. 2018 Feb;107:36-44. (PMID: 29111170)
Front Nutr. 2022 Feb 04;9:804210. (PMID: 35187034)
J Biochem Mol Toxicol. 2021 Aug;35(8):e22832. (PMID: 34028927)
Nutr Metab (Lond). 2023 Feb 6;20(1):6. (PMID: 36747190)
Stem Cells Int. 2022 Aug 16;2022:1395299. (PMID: 36017130)
J Orthop Translat. 2022 Nov 03;38:126-140. (PMID: 36381248)
Pharmaceutics. 2021 Mar 08;13(3):. (PMID: 33800247)
Pharmgenomics Pers Med. 2009;2:69-78. (PMID: 23226036)
BMC Chem. 2019 Oct 31;13(1):125. (PMID: 31696162)
Int Immunopharmacol. 2024 Nov 15;141:112932. (PMID: 39154533)
Cell Mol Bioeng. 2014 Sep;7(3):409-420. (PMID: 27398100)
Z Gerontol Geriatr. 2016 Jul;49(5):423-8. (PMID: 26358080)
Osteoporos Int. 2023 Oct;34(10):1677-1701. (PMID: 37393580)
Eur J Pharmacol. 2021 Sep 5;906:174268. (PMID: 34166702)
Science. 1974 May 3;184(4136):575-7. (PMID: 4821958)
Front Endocrinol (Lausanne). 2020 Oct 22;11:590575. (PMID: 33193101)
J Pineal Res. 2021 Apr;70(3):e12715. (PMID: 33421193)
Calcif Tissue Int. 2022 Jun;110(6):723-735. (PMID: 35048133)
Chem Biol Interact. 2022 Oct 1;366:110168. (PMID: 36087815)
Food Sci Nutr. 2020 Oct 20;8(12):6550-6556. (PMID: 33312539)
Diabetes Metab Syndr Obes. 2023 Feb 10;16:397-407. (PMID: 36798908)
J Bone Miner Metab. 2021 Nov;39(6):944-951. (PMID: 34189660)
BMC Public Health. 2019 Aug 9;19(1):1076. (PMID: 31399027)
Inflammation. 2020 Oct;43(5):1589-1598. (PMID: 32410071)
Front Cell Dev Biol. 2021 Feb 11;9:629274. (PMID: 33644068)
Bone Joint Res. 2022 Nov;11(11):751-762. (PMID: 36317318)
Z Gerontol Geriatr. 2019 Mar;52(2):139-147. (PMID: 29476205)
J Bone Miner Res. 2017 Feb;32(2):230-236. (PMID: 27541696)
FASEB J. 2023 Jul;37(7):e22985. (PMID: 37249350)
Prog Biophys Mol Biol. 2014 May;114(3):146-52. (PMID: 24556024)
Pharm Biol. 2022 Dec;60(1):2219-2228. (PMID: 36382865)
J Orthop Translat. 2020 Dec 28;27:67-76. (PMID: 33437639)
J Pineal Res. 2018 Apr;64(3):. (PMID: 29285799)
Electromagn Biol Med. 2017;36(1):8-19. (PMID: 27355421)
Clin Ther. 2022 May;44(5):783-812. (PMID: 35400533)
Contributed Indexing:
Keywords: Melatonin; bone mass; bone strength; inflammation; oxidative stress; static magnetic field
Substance Nomenclature:
JL5DK93RCL (Melatonin)
Entry Date(s):
Date Created: 20250602 Date Completed: 20250602 Latest Revision: 20250605
Update Code:
20250605
PubMed Central ID:
PMC12131536
DOI:
10.1080/07853890.2025.2512627
PMID:
40454678
Database:
MEDLINE

Weitere Informationen

Objective: This research aimed to examine the possible impacts of Melatonin (Mel) combined with static magnetic field (SMF) on bone mass and strength in rats with osteoporosis induced by bilateral ovary removal.
Methods: Following bilateral ovariectomy, the female ovariectomized (OVX) rats were systematically allocated into four distinct experimental groups: (1) OVX (control group), (2) OVX+melatonin (OVX+Mel), (3) OVX+magnetostatic field (OVX+SMF), and (4) OVX+melatonin/magnetostatic field (OVX+Mel/SMF). The intervention protocol consisted of daily administration of melatonin (30 mg/kg/day), exposure to a static magnetic field (50 ± 4 µT), or a combination of both treatments for a duration of 12 weeks. Upon completion of the treatment period, comprehensive biological samples were collected, including blood specimens and bilateral femurs, for subsequent multi-modal analyses. These analyses encompassed Micro-CT imaging for bone microarchitecture evaluation, histological examination for tissue morphology, biomechanical testing for bone strength assessment, serum cytokine profiling, oxidative stress marker quantification, bone metabolic marker analysis, and RT-PCR for gene expression evaluation.
Results: Micro-CT evaluation indicated that OVX rats treated with Mel and SMF had significantly higher BMD, BMC BV/TV, Tb. N, and Tb. Th values, along with lower Tb. Sp than the OVX+SMF and OVX+Mel groups (all p  < 0.05). Histological analysis showed that the combination of Mel and SMF notably improved trabecular quality while increasing MAR, OC, and SOD2 expression, and reducing TRAP and TNF-α levels compared to the OVX+SMF and OVX+Mel groups (all p  < 0.05). Biomechanical tests demonstrated that combined treatment enhanced maximum load, stiffness, energy absorption, ultimate stress, toughness, and elastic modulus in comparison to the OVX+SMF and OVX+Mel groups (all p  < 0.05). RT-PCR results revealed a significant increase in SIRT1 and OPG expression while inhibiting RANKL and SOST compared to the OVX+SMF and OVX+Mel groups (all p  < 0.05). Serum tests found that this combination treatment significantly reduced levels of P1NP, CTX-1, MDA, TNF-α, and IL-6 while increasing SOD expression relative to the OVX+SMF and OVX+Mel groups (all p  < 0.05).
Conclusion: Our results indicate that Mel combined with SMF has the potential to be an effective method for preventing bone loss and maintaining bone strength in postmenopausal osteoporosis.