Treffer: Cognitive-affective maps extended logic: Proposing tools to collect and analyze attitudes and belief systems.

Title:
Cognitive-affective maps extended logic: Proposing tools to collect and analyze attitudes and belief systems.
Authors:
Fenn J; Institute of Psychology, University of Freiburg, Freiburg im Breisgau, Germany. julius.fenn@psychologie.uni-freiburg.de.; Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany. julius.fenn@psychologie.uni-freiburg.de., Gouret F; Institute of Psychology, University of Freiburg, Freiburg im Breisgau, Germany., Gorki M; Institute of Psychology, University of Freiburg, Freiburg im Breisgau, Germany.; Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany., Reuter L; Institute of Psychology, University of Freiburg, Freiburg im Breisgau, Germany., Gros W; Institute of Psychology, University of Freiburg, Freiburg im Breisgau, Germany.; Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany., Hüttner P; Institute of Psychology, University of Freiburg, Freiburg im Breisgau, Germany., Kiesel A; Institute of Psychology, University of Freiburg, Freiburg im Breisgau, Germany.; Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany.
Source:
Behavior research methods [Behav Res Methods] 2025 May 19; Vol. 57 (6), pp. 174. Date of Electronic Publication: 2025 May 19.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Springer Country of Publication: United States NLM ID: 101244316 Publication Model: Electronic Cited Medium: Internet ISSN: 1554-3528 (Electronic) Linking ISSN: 1554351X NLM ISO Abbreviation: Behav Res Methods Subsets: MEDLINE
Imprint Name(s):
Publication: 2010- : New York : Springer
Original Publication: Austin, Tex. : Psychonomic Society, c2005-
References:
Almende, B., Thieurmel, B., & Robert, T. (2021). visNetwork: Network visualization using ’vis.js’ library [Manual].
Bellamy, R., Chilvers, J., & Vaughan, N. E. (2016). Deliberative Mapping of options for tackling climate change: Citizens and specialists ‘open up’ appraisal of geoengineering. Public Understanding of Science, 25(3), 269–286. https://doi.org/10.1177/0963662514548628.
Bernard, H. R., Wutich, A., & Ryan, G. W. (2016). Analyzing Qualitative Data: Systematic Approaches. Thousand Oaks: SAGE Publications.
Bessette, D. L., Mayer, L. A., Cwik, B., Vezér, M., Keller, K., Lempert, R. J., & Tuana, N. (2017). Building a Values-Informed Mental Model for New Orleans Climate Risk Management. Risk Analysis, 37(10), 1993–2004. https://doi.org/10.1111/risa.12743. (PMID: 10.1111/risa.1274328084634)
Bianconi, G. (2018). Multilayer Networks: Structure and Function. Oxford: Oxford University Press. (PMID: 10.1093/oso/9780198753919.001.0001)
Bibeault, B., Rosa, A. D., & Katz, Y. (2015). jQuery in Action. Simon and Schuster.
Borge-Holthoefer, J., & Arenas, A. (2010). Semantic Networks: Structure and Dynamics. Entropy, 12(5), 1264–1302. https://doi.org/10.3390/e12051264. (PMID: 10.3390/e12051264)
Bourmistrova, N. W., Solomon, T., Braude, P., Strawbridge, R., & Carter, B. (2022). Long-term effects of COVID-19 on mental health: A systematic review. Journal of Affective Disorders, 299, 118–125. https://doi.org/10.1016/j.jad.2021.11.031. (PMID: 10.1016/j.jad.2021.11.03134798148)
Briganti, G., Scutari, M., & McNally, R. J. (2022). A tutorial on bayesian networks for psychopathology researchers. Psychological Methods. https://doi.org/10.1037/met0000479. (PMID: 10.1037/met000047935113632)
Brosch, T. (2021). Affect and emotions as drivers of climate change perception and action: A review. Current Opinion in Behavioral Sciences, 42, 15–21. https://doi.org/10.1016/j.cobeha.2021.02.001. (PMID: 10.1016/j.cobeha.2021.02.001)
Chen, D. L., Schonger, M., & Wickens, C. (2016). oTree–An open-source platform for laboratory, online, and field experiments. Journal of Behavioral and Experimental Finance, 9, 88–97. https://doi.org/10.1016/j.jbef.2015.12.001. (PMID: 10.1016/j.jbef.2015.12.001)
Clapp, M. (2021). Mapping and Comparing Political Ideologies, Masculinity Ideologies, and Shame Ideologies [Doctoral dissertation, Suffolk University]. https://doi.org/10.13140/RG.2.2.29522.07360.
Craik, K. J. W. (1943). The nature of explanation. Oxford, England: University Press, Macmillan.
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research (p. 1695). Complex Systems: InterJournal.
Damerau, F. J. (1964). A technique for computer detection and correction of spelling errors. Communications of the ACM, 7(3), 171–176. https://doi.org/10.1145/363958.363994. (PMID: 10.1145/363958.363994)
de Ridder, D. T. D., van den Boom, L. A. T. P., Kroese, F. M., Moors, E. H. M., & van den Broek, K. L. (2022). How do people understand the spread of COVID-19 infections? Mapping mental models of factors contributing to the pandemic. Psychology & Health, 1–20. https://doi.org/10.1080/08870446.2022.2129054.
De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2019). The “Small World of Words’’ English word association norms for over 12,000 cue words. Behavior Research Methods, 51(3), 987–1006. https://doi.org/10.3758/s13428-018-1115-7. (PMID: 10.3758/s13428-018-1115-730298265)
De Deyne, S., & Storms, G. (2008). Word associations: Network and semantic properties. Behavior Research Methods, 40(1), 213–231. https://doi.org/10.3758/BRM.40.1.213. (PMID: 10.3758/BRM.40.1.21318411545)
Denzau, A. T., & North, D. C. (1994). Shared Mental Models: Ideologies and Institutions. Kyklos, 47(1), 3–31. https://doi.org/10.1111/j.1467-6435.1994.tb02246.x. (PMID: 10.1111/j.1467-6435.1994.tb02246.x)
Diestel, R. (2017). Graph Theory (5th ed.). Berlin: Springer-Verlag. (PMID: 10.1007/978-3-662-53622-3)
Domenico, M. D. (2022). Multilayer Networks: Analysis and Visualization: Introduction to MuxViz with R. Berlin: Springer Nature. (PMID: 10.1007/978-3-030-75718-2)
Douglas, K. M., Sutton, R. M., & Cichocka, A. (2017). The Psychology of Conspiracy Theories. Current Directions in Psychological Science, 26(6), 538–542. https://doi.org/10.1177/0963721417718261. (PMID: 10.1177/0963721417718261292763455724570)
Doyle, E., Harrison, S. E., Hill, S. R., Williams, M., Paton, D., & Bostrom, A. (2022). Eliciting mental models of science and risk for disaster communication: A scoping review of methodologies. International Journal of Disaster Risk Reduction, 77, 1–23. https://doi.org/10.1016/j.ijdrr.2022.103084. (PMID: 10.1016/j.ijdrr.2022.103084)
Doyle, J., & Ford, D. N. (1998). Mental models concepts for system dynamics research. System Dynamics Review, 14(1), 3–29. https://doi.org/10.1002/(SICI)1099-1727(199821)14:1<3::AID-SDR140>3.0.CO;2-K. (PMID: 10.1002/(SICI)1099-1727(199821)14:1<3::AID-SDR140>3.0.CO;2-K)
Ecker, U. K. H., Lewandowsky, S., Cook, J., Schmid, P., Fazio, L. K., Brashier, N., & Amazeen, M. A. (2022). The psychological drivers of misinformation belief and its resistance to correction. Nature Reviews Psychology, 1(1), 13–29. https://doi.org/10.1038/s44159-021-00006-y. (PMID: 10.1038/s44159-021-00006-y)
Fellows, I. (2018). Wordcloud: Word clouds [Manual].
Fenn, J., Helm, J. F., Höfele, P., Kulbe, L., Ernst, A., & Kiesel, A. (2023). Identifying key-psychological factors influencing the acceptance of yet emerging technologies-A multi-method-approach to inform climate policy. PLOS Climate, 2(6), 1–25. https://doi.org/10.1371/journal.pclm.0000207. (PMID: 10.1371/journal.pclm.0000207)
Findlay, S. D., & Thagard, P. (2014). Emotional Change in International Negotiation: Analyzing the Camp David Accords Using Cognitive-Affective Maps. Group Decision and Negotiation, 23(6), 1281–1300. https://doi.org/10.1007/s10726-011-9242-x. (PMID: 10.1007/s10726-011-9242-x)
Fleiss, J. L., Levin, B., & Paik, M. C. (2013). Statistical Methods for Rates and Proportions. Hoboken: John Wiley & Sons.
Friedl, J. (2006). Mastering Regular Expressions. “O’Reilly Media, Inc.”.
Gisev, N., Bell, J. S., & Chen, T. F. (2013). Interrater agreement and interrater reliability: Key concepts, approaches, and applications. Research in Social and Administrative Pharmacy, 9(3), 330–338. https://doi.org/10.1016/j.sapharm.2012.04.004. (PMID: 10.1016/j.sapharm.2012.04.00422695215)
Goldberg, M. H., Gustafson, A., & van der Linden, S. (2020). Leveraging Social Science to Generate Lasting Engagement with Climate Change Solutions. One Earth, 3(3), 314–324. https://doi.org/10.1016/j.oneear.2020.08.011. (PMID: 10.1016/j.oneear.2020.08.011)
Gray, S.A., Gray, S., Cox, L.J., Henly-Shepard, S. (2013). Mental Modeler: A Fuzzy-Logic Cognitive Mapping Modeling Tool for Adaptive Environmental Management. 2013 46th Hawaii International Conference on System Sciences (pp. 965–973).
Gros, W., Reuter, L., Sprich, J., Schuldzinski, D., Fenn, J., & Kiesel, A. (2024). Cognitive-affective maps (CAMs) as measurement tool - Elaboration of quantitative and qualitative test-retest reliability. Technology in Society, 78, Article 102651. https://doi.org/10.1016/j.techsoc.2024.102651. (PMID: 10.1016/j.techsoc.2024.102651)
Gros, W., Reuter, L., Stumpf, M., & Kiesel, A. (2021). CAMediaid: Multimethod approach to assess Cognitive-Affective Maps in mediation - A quantitative validation study [Master’s thesis]. https://doi.org/10.13140/RG.2.2.12436.78726.
Hallgren, K.A. (2012). Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutorials in quantitative methods for psychology, 8(1), 23–34, https://doi.org/10.20982/tqmp.08.1.p023.
Henninger, F., Shevchenko, Y., Mertens, U.K., Kieslich, P.J., Hilbig, B.E. (2022). Lab.js: A free, open, online study builder. Behavior Research Methods, 54(2), 556–573, https://doi.org/10.3758/s13428-019-01283-5.
Hodgkinson, G. P., & Clarkson, G. P. (2005). What Have We Learned from Almost 30 Years of Research on Causal Mapping? Methodological Lessons and Choices for the Information Systems and Information Technology Communities. In G. P. Hodgkinson (Ed.), Causal Mapping for Research in Information Technology (pp. 46-80). IGI Global Scientific Publishing.
Höfele, P., Reuter, L., Estadieu, L., Livanec, S., Stumpf, M., & Kiesel, A. (2022). Connecting the methods of psychology and philosophy: Applying Cognitive-Affective Maps (CAMs) to identify ethical principles underlying the evaluation of bioinspired technologies. Philosophical Psychology, 1–24. https://doi.org/10.1080/09515089.2022.2113770.
Homer-Dixon, T., Maynard, J. L., Mildenberger, M., Milkoreit, M., Mock, S. J., Quilley, S., & Thagard, P. (2013). A Complex Systems Approach to the Study of Ideology: Cognitive-Affective Structures and the Dynamics of Belief Systems. Journal of Social and Political Psychology, 1(1), 337–363. https://doi.org/10.5964/jspp.v1i1.36. (PMID: 10.5964/jspp.v1i1.36)
Homer-Dixon, T., Milkoreit, M., Mock, S. J., Schröder, T., & Thagard, P. (2014). The Conceptual Structure of Social Disputes: Cognitive-Affective Maps as a Tool for Conflict Analysis and Resolution. SAGE Open, 4(1), 1–20. https://doi.org/10.1177/2158244014526210. (PMID: 10.1177/2158244014526210)
Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A., DuJardin, J. (2021). Thinc.
Ifenthaler, D. (2010). Relational, structural, and semantic analysis of graphical representations and concept maps. Educational Technology Research and Development, 58(1), 81–97. https://doi.org/10.1007/s11423-008-9087-4. (PMID: 10.1007/s11423-008-9087-4)
Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge: Cambridge University Press.
Jones, N., Ross, H., Lynam, T., Perez, P., & Leitch, A. (2011). Mental Models: An Interdisciplinary Synthesis of Theory and Methods. Ecology and Society, 16(1), 1–13. https://doi.org/10.5751/ES-03802-160146. (PMID: 10.5751/ES-03802-160146)
Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65–75. https://doi.org/10.1016/S0020-7373(86)80040-2. (PMID: 10.1016/S0020-7373(86)80040-2)
Kovacs, D., Tkachuk, A., Butte, G., Thorne, S. (2017). Supporting and Expanding the Scope and Application of Mental Modeling: Current and Future Software Developments. M.D. Wood, S. Thorne, D. Kovacs, G. Butte, and I. Linkov (Eds.), Mental Modeling Approach: Risk Management Application Case Studies (pp. 239–254). New York, NY: Springer.
Kozen, D.C. (1992). Depth-First and Breadth-First Search. D.C. Kozen (Ed.), The Design and Analysis of Algorithms (pp. 19–24). New York, NY: Springer.
Kreil, A. (2018). Cognitive-Affective Mapping within the context of staircase and elevator use. Evaluating a new method in empirical psychological research [Master’s thesis, Albert-Ludwigs-Universität Freiburg i. Br.].
Kuckartz, U., & Rädiker, S. (2022). Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung: Beltz Juventa.
Lange, K., Kühn, S., & Filevich, E. (2015). "Just Another Tool for Online Studies’’ (JATOS): An Easy Solution for Setup and Management of Web Servers Supporting Online Studies. PLOS ONE, 10(6), 1–14. https://doi.org/10.1371/journal.pone.0130834. (PMID: 10.1371/journal.pone.0130834)
Lehmann, F. (1992). Semantic networks. Computers & Mathematics with Applications, 23(2), 1–50. https://doi.org/10.1016/0898-1221(92)90135-5. (PMID: 10.1016/0898-1221(92)90135-5)
Leiner, D. (2023). SoSci Survey.
Leiserowitz, A. A. (2006). Climate Change Risk Perception and Policy Preferences: The Role of Affect, Imagery, and Values. Climatic Change, 77(1), 45–72. https://doi.org/10.1007/s10584-006-9059-9. (PMID: 10.1007/s10584-006-9059-9)
Levy, M. A., Lubell, M. N., & McRoberts, N. (2018). The structure of mental models of sustainable agriculture. Nature Sustainability, 1(8), 413–420. https://doi.org/10.1038/s41893-018-0116-y. (PMID: 10.1038/s41893-018-0116-y)
Livanec, S., Stumpf, M., Reuter, L., Fenn, J., & Kiesel, A. (2022). Who’s gonna use this? Acceptance prediction of emerging technologies with Cognitive-Affective Mapping and transdisciplinary considerations in the Anthropocene. The Anthropocene Review, 1–20,. https://doi.org/10.1177/20530196221078924.
Luo, C., Chen, A., Cui, B., & Liao, W. (2021). Exploring public perceptions of the COVID-19 vaccine online from a cultural perspective: Semantic network analysis of two social media platforms in the United States and China. Telematics and Informatics, 65, Article 101712. https://doi.org/10.1016/j.tele.2021.101712. (PMID: 10.1016/j.tele.2021.101712348876188429027)
Luthardt, J., Morgan, J. H., Bormann, I., & Schröder, T. (2022). Quantifying emotionally grounded discursive knowledge with cognitive-affective maps. Quality & Quantity, 56(3), 1557–1595. https://doi.org/10.1007/s11135-021-01195-7. (PMID: 10.1007/s11135-021-01195-7)
Luthardt, J., Schröder, T., Hildebrandt, F., & Bormann, I. (2020). “And Then We’ll Just Check If It Suits Us’’ - Cognitive-Affective Maps of Social Innovation in Early Childhood Education. Frontiers in Education, 5, 1–19. https://doi.org/10.3389/feduc.2020.00033. (PMID: 10.3389/feduc.2020.00033)
Mansell, J., Mock, S., Rhea, C., Tecza, A., & Piereder, J. (2021). Measuring attitudes as a complex system: Structured thinking and support for the Canadian carbon tax. Politics and the Life Sciences, 40(2), 179–201. https://doi.org/10.1017/pls.2021.16. (PMID: 10.1017/pls.2021.1634825808)
Mansell, J., Reuter, L., Rhea, C., & Kiesel, A. (2021). A Novel Network Approach to Capture Cognition and Affect: COVID-19 Experiences in Canada and Germany. Frontiers in Psychology, 12, 1–14. https://doi.org/10.3389/fpsyg.2021.663627. (PMID: 10.3389/fpsyg.2021.663627)
Mayer, L. A., Loa, K., Cwik, B., Tuana, N., Keller, K., Gonnerman, C., & Lempert, R. J. (2017). Understanding scientists’ computational modeling decisions about climate risk management strategies using values-informed mental models. Global Environmental Change, 42, 107–116. https://doi.org/10.1016/j.gloenvcha.2016.12.007. (PMID: 10.1016/j.gloenvcha.2016.12.007)
Mayring, P. (2022). Qualitative Content Analysis: A Step-by-Step Guide. Newcastle upon Tyne: SAGE.
Meuer, M., Oeberst, A., & Imhoff, R. (2023). How do conspiratorial explanations differ from non-conspiratorial explanations? A content analysis of real-world online articles. European Journal of Social Psychology, 53(2), 288–306. https://doi.org/10.1002/ejsp.2903. (PMID: 10.1002/ejsp.2903)
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. https://doi.org/10.48550/arXiv.1301.3781.
Milkoreit, M. (2017). Mindmade Politics: The Cognitive Roots of International Climate Governance. The MIT Press.
Mock, S., & Homer-Dixon, T. (2015). The Ideological Conflict Project: Theoretical and Methodological Foundations (tech. rep. No. 74). Centre for International Governance Innovation.
Moravcsik, A. (2014). Transparency: The Revolution in Qualitative Research. PS: Political Science & Politics, 47(1), 48–53, https://doi.org/10.1017/S1049096513001789.
Newman, M. (2018). Networks: An Introduction. Oxford University Press.
Nixon, R. (2021). Learning PHP, MySQL & JavaScript. "O’Reilly Media, Inc.".
Peng, R.D., & Matsui, E. (2016). The Art of Data Science: A Guide for Anyone who Works with Data. Lulu.com.
Prior, L. (2014). Content Analysis. The Oxford Handbook of Qualitative Research (pp. 359–379). Oxford: Oxford University Press.
Reips, U.- D. (2021). Web-based research in psychology: A review. Zeitschrift für Psychologie, 229(4), 198–213. https://doi.org/10.1027/2151-2604/a000475.
Reuter, L. (2022). Bridging Over the Troubled Waters of Quantitative and Qualitative Methods: Exploring Cognitive-Affective Maps in Empirical Research [Doctoral dissertation, University of Freiburg, Germany].
Reuter, L., Fenn, J., Bilo, T. A., Schulz, M., Weyland, A. L., Kiesel, A., & Thomaschke, R. (2021). Leisure walks modulate the cognitive and affective representation of the corona pandemic: Employing Cognitive-Affective Maps within a randomized experimental design. Applied Psychology: Health and Well-Being, 13(4), 952–967. https://doi.org/10.1111/aphw.12283. (PMID: 10.1111/aphw.1228334038624)
Reuter, L., Mansell, J., Rhea, C., & Kiesel, A. (2022). Direct assessment of individual connotation and experience: An introduction to cognitive-affective mapping. Politics and the Life Sciences, 41(1), 131–139. https://doi.org/10.1017/pls.2021.31. (PMID: 10.1017/pls.2021.31)
Rhea, C., Reuter, L., Thibeault, C., & Piereder, J. (2020). Valence Software Release.
Rinker, T. W. (2020). Qdap: Quantitative discourse analysis package. Buffalo, New York: Manual.
Romolini, M., Brinkley, W., & Wolf, K. L. (2012). What is urban environmental stewardship? Constructing a practitioner-derived framework. Res. Note PNW-RN-566. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 41, 566. https://doi.org/10.2737/PNW-RN-566.
Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33(6), 569–600. https://doi.org/10.1002/(SICI)1098-2736(199608)33:6<569::AID-TEA1>3.0.CO;2-M. (PMID: 10.1002/(SICI)1098-2736(199608)33:6<569::AID-TEA1>3.0.CO;2-M)
Sauter, M., Draschkow, D., & Mack, W. (2020). Building, Hosting and Recruiting: A Brief Introduction to Running Behavioral Experiments Online. Brain Sciences, 10(4), 251. https://doi.org/10.3390/brainsci10040251. (PMID: 10.3390/brainsci10040251323446717226161)
Schröder, T., & Wolf, I. (2017). Modeling multi-level mechanisms of environmental attitudes and behaviours: The example of carsharing in Berlin. Journal of Environmental Psychology, 52, 136–148. https://doi.org/10.1016/j.jenvp.2016.03.007. (PMID: 10.1016/j.jenvp.2016.03.007)
Sendtner, C. (2021). Kostbare Kisten: Gründe für Fehleinschätzungen der Kosten des eigenen Autos und deren Auswirkungen auf die Bewertung des ÖPNV -Masterarbeit [Master’s thesis, University of Freiburg]. https://doi.org/10.13140/RG.2.2.32640.56325.
Seydnejad, S. (2016). Modular Programming with JavaScript. Birmingham: Packt Publishing Ltd.
Slovic, P., Flynn, J. H., & Layman, M. (1991). Perceived Risk, Trust, and the Politics of Nuclear Waste. Science, 254(5038), 1603–1607. https://doi.org/10.1126/science.254.5038.1603. (PMID: 10.1126/science.254.5038.160317782210)
Soundarajan, S., Eliassi-Rad, T., & Gallagher, B. (2014). A Guide to Selecting a Network Similarity Method. In Proceedings of the 2014 SIAM International Conference on Data Mining (SDM) (pp. 1037-1045). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611973440.118 .
Srinivasa-Desikan, B. (2018). Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd.
Sterman, J. D. (2008). Risk Communication on Climate: Mental Models and Mass Balance. Science, 322(5901), 532–533. https://doi.org/10.1126/science.1162574. (PMID: 10.1126/science.116257418948524)
Strydhorst, N. A., & Landrum, A. R. (2022). Charting cognition: Mapping public understanding of COVID-19. Public Understanding of Science, 31(5), 534–552. https://doi.org/10.1177/09636625221078462. (PMID: 10.1177/0963662522107846235274566)
Talaga, S., & Nowak, A. (2022). Structural measures of similarity and complementarity in complex networks. Scientific Reports, 12(1), 16580. https://doi.org/10.1038/s41598-022-20710-w. (PMID: 10.1038/s41598-022-20710-w361957369532398)
Tazetdinov, A. (2023). Next.js Cookbook: Learn how to build scalable and high-performance apps from scratch (English). Noida: BPB Publications.
ten Hove, D., Jorgensen, T.D., van der Ark, L.A. (2018). On the Usefulness of Interrater Reliability Coefficients. M. Wiberg, S. Culpepper, R. Janssen, J. González, and D. Molenaar (Eds.), Quantitative Psychology (pp. 67–75). Cham: Springer International Publishing.
Thagard, P. (2000). Coherence in Thought and Action. MIT Press. (PMID: 10.7551/mitpress/1900.001.0001)
Thagard, P. (2006). Hot Thought: Mechanisms and Applications of Emotional Cognition. MIT Press.
Thagard, P. (2010a). EMPATHICA: A Computer Support System with Visual Representations for Cognitive-Affective Mapping. Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence (pp. 79–81).
Thagard, P. (2010). Explaining Economic Crises: Are There Collective Representations? Episteme, 7(3), 266–283. https://doi.org/10.3366/E1742360010000985. (PMID: 10.3366/E1742360010000985)
Thagard, P. (2012). The Cognitive Science of Science: Explanation, Discovery, and Conceptual Change. Cambridge: MIT Press. (PMID: 10.7551/mitpress/9218.001.0001)
Thagard, P. (2012b). Mapping minds across cultures. Grounding Social Sciences in Cognitive Sciences (pp. 35–60). Cambridge: MIT Press.
Thagard, P. (2014). The self as a system of multilevel interacting mechanisms. Philosophical Psychology, 27(2), 145–163. https://doi.org/10.1080/09515089.2012.725715. (PMID: 10.1080/09515089.2012.725715)
Thagard, P. (2014). Value Maps in Applied Ethics. Teaching Ethics, 1–19,. https://doi.org/10.5840/tej20149221.
Thagard, P. (2015). The Cognitive-Affective Structure of Political Ideologies. In B. Martinovsky (Ed.), Emotion in Group Decision and Negotiation (pp. 51-71). Springer Netherlands. https://doi.org/10.1007/978-94-017-9963-8_3 .
Thagard, P. (2018). Social Equality: Cognitive Modeling Based on Emotional Coherence Explains Attitude Change. Policy Insights from the Behavioral and Brain Sciences, 5(2), 247–256. https://doi.org/10.1177/2372732218782995. (PMID: 10.1177/2372732218782995)
Thagard, P. (2021). The cognitive science of COVID-19: Acceptance, denial, and belief change. Methods, 195, 92–102. https://doi.org/10.1016/j.ymeth.2021.03.009. (PMID: 10.1016/j.ymeth.2021.03.009337443958545909)
Thagard, P., & Larocque, L. (2020). Mapping Emotional Change in Psychotherapy (Unpublished Manuscript).
Tripto, J., Ben-Zvi Assaraf, O., Snapir, Z., & Amit, M. (2016). The ‘What is a system’ reflection interview as a knowledge integration activity for high school students’ understanding of complex systems in human biology. International Journal of Science Education, 38(4), 564–595. https://doi.org/10.1080/09500693.2016.1150620. (PMID: 10.1080/09500693.2016.1150620)
Tuval-Mashiach, R. (2017). Raising the curtain: The importance of transparency in qualitative research. Qualitative Psychology, 4(2), 126–138. https://doi.org/10.1037/qup0000062. (PMID: 10.1037/qup0000062)
Uscinski, J., Enders, A. M., Klofstad, C., & Stoler, J. (2022). Cause and effect: On the antecedents and consequences of conspiracy theory beliefs. Current Opinion in Psychology, 47, Article 101364. https://doi.org/10.1016/j.copsyc.2022.101364. (PMID: 10.1016/j.copsyc.2022.101364357283579547178)
Usó-Doménech, J. L., & Nescolarde-Selva, J. (2016). What are Belief Systems? Foundations of Science, 21(1), 147–152. https://doi.org/10.1007/s10699-015-9409-z. (PMID: 10.1007/s10699-015-9409-z)
van den Broek, K. L., Klein, S. A., Luomba, J., & Fischer, H. (2021). Introducing M-Tool: A standardised and inclusive mental model mapping tool. System Dynamics Review, 37(4), 353–362. https://doi.org/10.1002/sdr.1698. (PMID: 10.1002/sdr.1698)
van den Broek, K. L., Luomba, J., van den Broek, J., & Fischer, H. (2021). Evaluating the Application of the Mental Model Mapping Tool (M-Tool). Frontiers in Psychology, 12, Article 761882. (PMID: 10.3389/fpsyg.2021.761882349701948712333)
van der Loo, M.P. (2014). The stringdist package for approximate string matching. The R Journal, 6(1), 111–122, https://doi.org/10.32614/RJ-2014-011.
Vink, S., van Tartwijk, J., Verloop, N., Gosselink, M., Driessen, E., & Bolk, J. (2016). The articulation of integration of clinical and basic sciences in concept maps: Differences between experienced and resident groups. Advances in Health Sciences Education, 21(3), 643–657. https://doi.org/10.1007/s10459-015-9657-2. (PMID: 10.1007/s10459-015-9657-226692262)
Wickham, H. (2019). Advanced R (2nd ed.). Boca Raton: CRC Press. (PMID: 10.1201/9781351201315)
Wickham, H. (2021). Mastering Shiny. Sebastopol: O’Reilly Media Inc.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R.. Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1–6, https://doi.org/10.21105/joss.01686.
Wickham, H., & Grolemund, G. (2017). R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. Sebastopol: O’Reilly Media Inc.
Wolf, I., Schröder, T., Neumann, J., & de Haan, G. (2015). Changing minds about electric cars: An empirically grounded agent-based modeling approach. Technological Forecasting and Social Change, 94, 269–285. https://doi.org/10.1016/j.techfore.2014.10.010. (PMID: 10.1016/j.techfore.2014.10.010)
Wolfe, S. E. (2012). Water Cognition and Cognitive Affective Mapping: Identifying Priority Clusters Within a Canadian Water Efficiency Community. Water Resources Management, 26(10), 2991–3004. https://doi.org/10.1007/s11269-012-0061-x.
Wood, M. D., Thorne, S., Kovacs, D., Butte, G., & Linkov, I. (2016). Mental Modeling Approach: Risk Management Application Case Studies. Berlin: Springer.
Zaunbrecher, B.S., Kluge, J., Ziefle, M. (2018). Exploring Mental Models of Geothermal Energy among Laypeople in Germany as Hidden Drivers for Acceptance. Journal of Sustainable Development of Energy, Water and Environment Systems, 6(3), 446–463, https://doi.org/10.13044/j.sdewes.d5.0192.
Grant Information:
2277,EXC-2193/1 507-390951807 Deutsche Forschungsgemeinschaft
Contributed Indexing:
Keywords: Attitudes; Cognitive-affective mapping; Cognitive-affective maps; Mixed methods; Network
Entry Date(s):
Date Created: 20250519 Date Completed: 20250519 Latest Revision: 20250604
Update Code:
20250604
PubMed Central ID:
PMC12089172
DOI:
10.3758/s13428-025-02699-y
PMID:
40389773
Database:
MEDLINE

Weitere Informationen

Cognitive-affective maps extended logic is a software package that includes three tools designed for the collection and analysis of cognitive-affective maps (CAMs). CAMs are an innovative research method used to identify, visually represent, and analyze belief systems or any semantic knowledge. By instructing participants on how to draw a CAM, they can create a visual depiction of a belief system that illustrates their attitudes, thoughts, and emotional associations regarding a specific topic. CAMs can be considered as networks enabling participants to freely draw concepts and illustrate the affective (emotional) evaluations and connections between them. To simplify the creation of CAM studies, we first developed an administrative panel for researchers which enables them to set up CAM studies without any coding. Second, to draw CAMs, a tool was developed to give participants the opportunity to create a visual depiction of their own belief system regarding a specific topic. Third, the resulting data can be analyzed using the respective data analysis app, which tracks each analysis step to make the analysis process fully transparent. As a time-efficient approach, CAMs can be used to inform exploratory research questions, like the conceptualization of surveys, or be valuable as an independent method. The tools are available under a free and open-source license. Further information, code, and comprehensive documentation are available at https://drawyourminds.de .
(© 2025. The Author(s).)

Declarations. Conflicts of Interest: The authors have no conflicts of interest to report. Ethics approval: Not applicable. Consent to participate: Not applicable. Consent for publication: Not applicable. Code availability: The code for this project can be found on GitHub at https://github.com/CAM-E-L .