Treffer: Ultrasound contrast microbubbles to predict the microsphere distribution during transarterial radioembolization with holmium microspheres, an in vitro proof of concept study.

Title:
Ultrasound contrast microbubbles to predict the microsphere distribution during transarterial radioembolization with holmium microspheres, an in vitro proof of concept study.
Authors:
van der Hoek JL; Multi-Modality Medical Imaging Group, TechMed Center, University of Twente, Enschede, The Netherlands., Snoeijink TJ; Multi-Modality Medical Imaging Group, TechMed Center, University of Twente, Enschede, The Netherlands.; Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands., Mirgolbabaee H; Multi-Modality Medical Imaging Group, TechMed Center, University of Twente, Enschede, The Netherlands.; Physics of Fluids Group, TechMed Center, University of Twente, Enschede, The Netherlands., Kunst R; Multi-Modality Medical Imaging Group, TechMed Center, University of Twente, Enschede, The Netherlands., Versluis M; Physics of Fluids Group, TechMed Center, University of Twente, Enschede, The Netherlands., Arens J; Engineering Organ Support Technologies Group, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands., Manohar S; Multi-Modality Medical Imaging Group, TechMed Center, University of Twente, Enschede, The Netherlands., Groot Jebbink E; Multi-Modality Medical Imaging Group, TechMed Center, University of Twente, Enschede, The Netherlands.
Source:
Drug delivery [Drug Deliv] 2025 Dec; Vol. 32 (1), pp. 2505007. Date of Electronic Publication: 2025 May 18.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Taylor & Francis Country of Publication: England NLM ID: 9417471 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-0464 (Electronic) Linking ISSN: 10717544 NLM ISO Abbreviation: Drug Deliv Subsets: MEDLINE
Imprint Name(s):
Publication: 2015->: Abingdon, Oxford : Taylor & Francis
Original Publication: Orlando, FL : Academic Press, c1993-
References:
Ultrasound Med Biol. 2021 Jun;47(6):1465-1474. (PMID: 33653626)
Trials. 2014 Aug 06;15:311. (PMID: 25095718)
Molecules. 2022 Jun 22;27(13):. (PMID: 35807243)
Radiology. 2021 Feb;298(2):450-457. (PMID: 33320067)
Ultrasound Med Biol. 2020 Dec;46(12):3339-3352. (PMID: 33008649)
Cancer Lett. 2017 Dec 28;411:100-105. (PMID: 28969964)
Exp Fluids. 2018 Nov;59(11):. (PMID: 31745378)
Clin Radiol. 2014 Oct;69(10):1056-61. (PMID: 25017449)
Ultrasound Med Biol. 2012 May;38(5):834-45. (PMID: 22402020)
Cancer Med. 2023 Feb;12(3):2590-2599. (PMID: 35943116)
Semin Nucl Med. 2019 May;49(3):237-243. (PMID: 30954190)
Clin Gastroenterol Hepatol. 2013 Oct;11(10):1358-1365.e1. (PMID: 23644386)
Artif Organs. 2020 Aug;44(8):818-826. (PMID: 32065666)
CA Cancer J Clin. 2018 Nov;68(6):394-424. (PMID: 30207593)
Drug Deliv. 2023 Dec;30(1):2226366. (PMID: 37341184)
Proc Natl Acad Sci U S A. 1926 Mar;12(3):207-14. (PMID: 16576980)
J Vasc Interv Radiol. 2022 Jun;33(6):668-677.e1. (PMID: 35301128)
Lancet Oncol. 2012 Oct;13(10):1025-34. (PMID: 22920685)
Biomed Eng Lett. 2017 Feb 14;7(2):59-69. (PMID: 30603152)
EJNMMI Phys. 2024 Oct 16;11(1):87. (PMID: 39412619)
Ultrasound Q. 2020 Sep;36(3):218-223. (PMID: 32890324)
Med Ultrason. 2011 Dec;13(4):296-301. (PMID: 22132402)
Proc Inst Mech Eng H. 2015 Apr;229(4):291-306. (PMID: 25934258)
Eur J Nucl Med Mol Imaging. 2022 Apr;49(5):1682-1699. (PMID: 35146577)
World J Hepatol. 2015 Aug 28;7(18):2147-54. (PMID: 26328026)
J Exp Clin Cancer Res. 2010 Jun 15;29:70. (PMID: 20550679)
Ultrasound Med Biol. 2020 Apr;46(4):892-908. (PMID: 31941587)
Ultrasound Med Biol. 2021 Sep;47(9):2523-2531. (PMID: 34130880)
Ann Biomed Eng. 2010 May;38(5):1862-79. (PMID: 20162358)
Cancer Epidemiol. 2020 Aug;67:101760. (PMID: 32562887)
J Hepatol. 2022 Mar;76(3):681-693. (PMID: 34801630)
J Nucl Med. 2013 Aug;54(8):1294-301. (PMID: 23749996)
Eur J Nucl Med Mol Imaging. 2020 Apr;47(4):744-747. (PMID: 31875243)
Radiology. 2020 Sep;296(3):673-684. (PMID: 32602828)
EJNMMI Radiopharm Chem. 2019 Aug 5;4(1):19. (PMID: 31659560)
Eur Radiol. 2013 Mar;23(3):827-35. (PMID: 23014797)
Molecules. 2021 Jun 29;26(13):. (PMID: 34209590)
Hepatology. 2021 Nov;74(5):2342-2352. (PMID: 33739462)
Eur J Nucl Med Mol Imaging. 2020 Apr;47(4):798-806. (PMID: 31399801)
Biomedicines. 2024 Aug 07;12(8):. (PMID: 39200258)
Int J Numer Method Biomed Eng. 2017 Feb;33(2):. (PMID: 27038438)
Radiat Oncol. 2014 Dec 18;9:266. (PMID: 25518850)
J Endovasc Ther. 2025 Feb 24;:15266028251318953. (PMID: 39989304)
Eur Radiol. 2023 Feb;33(2):988-995. (PMID: 36205769)
Ann Biomed Eng. 2019 Nov;47(11):2271-2283. (PMID: 31165293)
Biomaterials. 2005 Mar;26(8):925-32. (PMID: 15353204)
Contributed Indexing:
Keywords: In-vitro model; biodistribution; holmium microspheres; particle flow behavior; transarterial radioembolization; ultrasound contrast microbubbles
Substance Nomenclature:
W1XX32SQN1 (Holmium)
0 (Contrast Media)
Entry Date(s):
Date Created: 20250519 Date Completed: 20250519 Latest Revision: 20250522
Update Code:
20250522
PubMed Central ID:
PMC12090288
DOI:
10.1080/10717544.2025.2505007
PMID:
40384014
Database:
MEDLINE

Weitere Informationen

Transarterial radioembolization (TARE) is an established treatment method for non-resectable liver tumors. One of the challenges of the approach is the accurate prediction of the microsphere biodistribution in the liver. We propose to use ultrasound contrast microbubbles as holmium microsphere precursors, which allows real-time prediction of the microsphere trajectories and biodistribution using dynamic contrast-enhanced ultrasound (DCE-US). The immediate goal in this in vitro study was to investigate the predictive capabilities of microbubbles as microsphere precursors. The study was conducted in an experimental in vitro model which represents the bifurcating right branch of the hepatic artery. A controlled injection of experimental BR-14 ultrasound contrast microbubbles and non-radioactive holmium-165 microspheres was performed in separate consecutive experiments in an arterial flow phantom. The microbubbles and microspheres were collected separately at the outlets of the phantom and counted using a Coulter counter to determine their distribution over the different outlets. The flow profile, the injection velocity, and the catheter position were monitored during the measurements to ensure stability. The results showed a good correlation between the microbubble and the microsphere distributions (p = 0.0038, r = 0.88) measured at the outlets. Differences in the distributions could be attributed to the characteristics of microbubbles and microspheres alone (e.g. particle size and concentration), since critical parameters were kept stable between the two experiments. The current in vitro study provides confidence that the microsphere biodistribution can be predicted using contrast microbubbles. The comparison provided by this study forms a foundation for the development of a DCE-US guided TARE treatment.