Treffer: Bioengineering Innervated Esophagus With Improved Motility: Limitations and Future Directions.
O. Reinberg, “Esophageal Replacements in Children,” Annals of the New York Academy of Sciences 1381 (2016): 104–112, https://doi.org/10.1111/nyas.13101.
W. H. Zeng, W. L. Jiang, G. J. Kang, et al., “Colon Interposition for Corrosive Esophageal Stricture: Single Institution Experience With 119 Cases,” Current Medical Science 39, no. 3 (2019): 415–418, https://doi.org/10.1007/s11596‐019‐2052‐0.
C. Faure and F. Righini Grunder, “Dysmotility in Esophageal Atresia: Pathophysiology, Characterization, and Treatment,” Frontiers in Pediatrics 5 (2017): 130, https://doi.org/10.3389/fped.2017.00130.
N. Rommel, M. Rayyan, C. Scheerens, and T. Omari, “The Potential Benefits of Applying Recent Advances in Esophageal Motility Testing in Patients With Esophageal Atresia,” Frontiers in Pediatrics 5, no. 137 (2017): 137, https://doi.org/10.3389/fped.2017.00137.
D. A. Patel, R. Yadlapati, and M. F. Vaezi, “Esophageal Motility Disorders: Current Approach to Diagnostics and Therapeutics,” Gastroenterology 162 (2022): 1617–1634, https://doi.org/10.1053/j.gastro.2021.12.289.
B. Tan, R. Q. Wei, M. Y. Tan, et al., “Tissue Engineered Esophagus by Mesenchymal Stem Cell Seeding for Esophageal Repair in a Canine Model,” Journal of Surgical Research 182, no. 1 (2013): 40–48, https://doi.org/10.1016/j.jss.2012.07.054.
J. Catry, M. Luong‐Nguyen, L. Arakelian, et al., “Circumferential Esophageal Replacement by a Tissue‐Engineered Substitute Using Mesenchymal Stem Cells: An Experimental Study in Mini Pigs,” Cell Transplantation 26 (2017): 1831–1839, https://doi.org/10.1177/0963689717741498.
Y. Luo, Y. Chen, Z. Gu, et al., “Engineered Muscle From Micro‐Channeled PEG Scaffold With Magnetic Fe3O4 Fixation Towards Accelerating Esophageal Muscle Repair,” Materials Today Bio 23 (2023): 100853, https://doi.org/10.1016/j.mtbio.2023.100853.
M. Marzaro, M. Algeri, L. Tomao, et al., “Successful Muscle Regeneration by a Homologous Microperforated Scaffold Seeded With Autologous Mesenchymal Stromal Cells in a Porcine Esophageal Substitution Model,” Therapeutic Advances in Gastroenterology 13 (2020): 1756284820923220, https://doi.org/10.1177/1756284820923220.
G. Luc, G. Charles, C. Gronnier, et al., “Decellularized and Matured Esophageal Scaffold for Circumferential Esophagus Replacement: Proof of Concept in a Pig Model,” Biomaterials 175 (2018): 1–18, https://doi.org/10.1016/j.biomaterials.2018.05.023.
Y. J. Tan, W. Y. Yeong, X. Tan, J. An, K. S. Chian, and K. F. Leong, “Characterization, Mechanical Behavior and In Vitro Evaluation of a Melt‐Drawn Scaffold for Esophageal Tissue Engineering,” Journal of the Mechanical Behavior of Biomedical Materials 57 (2016): 246–259, https://doi.org/10.1016/j.jmbbm.2015.12.015.
J. M. Aho, S. La Francesca, S. D. Olson, et al., “First‐In‐Human Segmental Esophageal Reconstruction Using a Bioengineered Mesenchymal Stromal Cell‐Seeded Implant,” JTO Clinical and Research Reports 2 (2021): 100216, https://doi.org/10.1016/j.jtocrr.2021.100216.
J. Y. Tan, C. K. Chua, K. F. Leong, K. S. Chian, W. S. Leong, and L. P. Tan, “Esophageal Tissue Engineering: An In‐Depth Review on Scaffold Design,” Biotechnology and Bioengineering 109, no. 1 (2012): 1–15, https://doi.org/10.1002/bit.23323.
K. Kanetaka, S. Kobayashi, and S. Eguchi, “Regenerative Medicine for the Esophagus,” Surgery Today 48 (2018): 739–747, https://doi.org/10.1007/s00595‐017‐1610‐y.
Y. Gao and S. Z. Jin, “Strategies for Treating Oesophageal Diseases With Stem Cells,” World Journal of Stem Cells 12 (2020): 488–499, https://doi.org/10.4252/wjsc.v12.i6.488.
T. J. Jensen, C. Foster, W. Sayej, et al., “Conditional Reprogramming of Pediatric Human Esophageal Epithelial Cells for Use in Tissue Engineering and Disease Investigation,” Journal of Visualized Experiments 121 (2017): 55243, https://doi.org/10.3791/55243.
A. A. Rahman, T. Ohkura, S. Bhave, et al., “Enteric Neural Stem Cell Transplant Restores Gut Motility in Mice With Hirschsprung Disease,” JCI Insight 9, no. 17 (2024): e179755, https://doi.org/10.1172/jci.insight.179755.
R. Hotta, A. Rahman, S. Bhave, et al., “Transplanted ENSCs Form Functional Connections With Intestinal Smooth Muscle and Restore Colonic Motility in nNOS‐Deficient Mice,” Stem Cell Research & Therapy 14, no. 1 (2023): 232, https://doi.org/10.1186/s13287‐023‐03469‐3.
J. L. Mueller, A. R. Leavitt, A. A. Rahman, et al., “Highly Neurogenic Glia From Human and Mouse Myenteric Ganglia Generate Functional Neurons Following Culture and Transplantation Into the Gut,” Cell Reports 43, no. 11 (2024): 114919, https://doi.org/10.1016/j.celrep.2024.114919.
E. Yazaki and D. Sifrim, “Anatomy and Physiology of the Esophageal Body,” Diseases of the Esophagus 25 (2012): 292–298, https://doi.org/10.1111/j.1442‐2050.2011.01180.x.
T. Shiina, T. Shima, K. Masuda, et al., “Contractile Properties of Esophageal Striated Muscle: Comparison With Cardiac and Skeletal Muscles in Rats,” Journal of Biomedicine & Biotechnology 2010 (2010): 459789, https://doi.org/10.1155/2010/459789.
E. A. Stavropoulou, Y. F. Dafalias, and D. P. Sokolis, “Biomechanical Behavior and Histological Organization of the Three‐Layered Passive Esophagus as a Function of Topography,” Proceedings of the Institution of Mechanical Engineers. Part H 226 (2012): 477–490, https://doi.org/10.1177/0954411912444073.
Y. Zhang, D. Bailey, P. Yang, E. Kim, and J. Que, “The Development and Stem Cells of the Esophagus,” Development 148 (2021): dev193839, https://doi.org/10.1242/dev.193839.
N. Patel, Y. Jiang, R. K. Mittal, T. H. Kim, M. Ledgerwood, and V. Bhargava, “Circular and Longitudinal Muscles Shortening Indicates Sliding Patterns During Peristalsis and Transient Lower Esophageal Sphincter Relaxation,” American Journal of Physiology. Gastrointestinal and Liver Physiology 309, no. 5 (2015): G360–G367, https://doi.org/10.1152/ajpgi.00067.2015.
K. S. Patel and A. Thavamani, Physiology, Peristalsis (StatPearls Publishing LLC, 2024).
R. K. Mittal, “Regulation and Dysregulation of Esophageal Peristalsis by the Integrated Function of Circular and Longitudinal Muscle Layers in Health and Disease,” American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (2016): G431–G443, https://doi.org/10.1152/ajpgi.00182.2016.
M. W. Wong, J. S. Hung, W. Y. Lei, et al., “Esophageal Secondary Peristalsis Following Acid Infusion and Chemical Clearance Correlate With Mucosal Integrity and Acid Sensitivity in GERD Patients,” Therapeutic Advances in Gastroenterology 16 (2023): 17562848231179329, https://doi.org/10.1177/17562848231179329.
S. M. Shaw and R. Martino, “The Normal Swallow: Muscular and Neurophysiological Control,” Otolaryngologic Clinics of North America 46 (2013): 937–956, https://doi.org/10.1016/j.otc.2013.09.006.
I. Espinosa‐Medina, B. Jevans, F. Boismoreau, et al., “Dual Origin of Enteric Neurons in Vagal Schwann Cell Precursors and the Sympathetic Neural Crest,” Proceedings of the National Academy of Sciences of the United States of America 114, no. 45 (2017): 11980–11985, https://doi.org/10.1073/pnas.1710308114.
X. Zhang, D. Patil, R. D. Odze, et al., “The Microscopic Anatomy of the Esophagus Including the Individual Layers, Specialized Tissues, and Unique Components and Their Responses to Injury,” Annals of the New York Academy of Sciences 1434, no. 1 (2018): 304–318, https://doi.org/10.1111/nyas.13705.
T. Shiina, T. Shima, J. Wörl, W. L. Neuhuber, and Y. Shimizu, “The Neural Regulation of the Mammalian Esophageal Motility and Its Implication for Esophageal Diseases,” Pathophysiology 17, no. 2 (2010): 129–133, https://doi.org/10.1016/j.pathophys.2009.03.008.
R. K. Goyal and A. Chaudhury, “Physiology of Normal Esophageal Motility,” Journal of Clinical Gastroenterology 42 (2008): 610–619, https://doi.org/10.1097/MCG.0b013e31816b444d.
P. Woodland, R. Aktar, E. Mthunzi, et al., “Distinct Afferent Innervation Patterns Within the Human Proximal and Distal Esophageal Mucosa,” American Journal of Physiology. Gastrointestinal and Liver Physiology 308, no. 6 (2015): G525–G531, https://doi.org/10.1152/ajpgi.00175.2014.
K. Michel, B. Kuch, S. Dengler, I. E. Demir, F. Zeller, and M. Schemann, “How Big Is the Little Brain in the Gut? Neuronal Numbers in the Enteric Nervous System of Mice, Guinea Pig, and Human,” Neurogastroenterology & Motility 34 (2022): e14440, https://doi.org/10.1111/nmo.14440.
L. Miller, P. Clavé, R. Farré, et al., “Physiology of the Upper Segment, Body, and Lower Segment of the Esophagus,” Annals of the New York Academy of Sciences 1300 (2013): 261–277, https://doi.org/10.1111/nyas.12250.
M. Wu, M. Majewski, J. Wojtkiewicz, J. M. Vanderwinden, D. Adriaensen, and J. P. Timmermans, “Anatomical and Neurochemical Features of the Extrinsic and Intrinsic Innervation of the Striated Muscle in the Porcine Esophagus: Evidence for Regional and Species Differences,” Cell and Tissue Research 311, no. 3 (2003): 289–297, https://doi.org/10.1007/s00441‐002‐0696‐7.
T. V. Ullal, S. L. Marks, P. C. Belafsky, J. L. Conklin, and J. E. Pandolfino, “A Comparative Assessment of the Diagnosis of Swallowing Impairment and Gastroesophageal Reflux in Canines and Humans,” Frontiers in Veterinary Science 9 (2022): 889331, https://doi.org/10.3389/fvets.2022.889331.
T. Shiina, T. Shima, Y. Suzuki, J. Wörl, and Y. Shimizu, “Neural Regulation of Esophageal Striated Muscle in the House Musk Shrew (Suncus murinus),” Autonomic Neuroscience 168, no. 1‐2 (2012): 25–31, https://doi.org/10.1016/j.autneu.2012.01.003.
K. N. Bitar, S. Raghavan, and E. Zakhem, “Tissue Engineering in the Gut: Developments in Neuromusculature,” Gastroenterology 146 (2014): 1614–1624 20140327., https://doi.org/10.1053/j.gastro.2014.03.044.
K. N. Bitar and E. Zakhem, “Bioengineering the Gut: Future Prospects of Regenerative Medicine,” Nature Reviews. Gastroenterology & Hepatology 13 (2016): 543–556, https://doi.org/10.1038/nrgastro.2016.124.
E. Zakhem, M. Elbahrawy, G. Orlando, and K. N. Bitar, “Successful Implantation of an Engineered Tubular Neuromuscular Tissue Composed of Human Cells and Chitosan Scaffold,” Surgery 158, no. 6 (2015): 1598–1608, https://doi.org/10.1016/j.surg.2015.05.009.
E. Zakhem, R. Tamburrini, G. Orlando, K. L. Koch, and K. N. Bitar, “Transplantation of a Human Tissue‐Engineered Bowel in an Athymic Rat Model,” Tissue Engineering. Part C, Methods 23, no. 11 (2017): 652–660, https://doi.org/10.1089/ten.tec.2017.0113.
E. Zakhem, M. El Bahrawy, G. Orlando, et al., “Biomechanical Properties of an Implanted Engineered Tubular Gut‐Sphincter Complex,” Journal of Tissue Engineering and Regenerative Medicine 11 (2017): 3398–3407, https://doi.org/10.1002/term.2253.
S. Raghavan and K. N. Bitar, “The Influence of Extracellular Matrix Composition on the Differentiation of Neuronal Subtypes in Tissue Engineered Innervated Intestinal Smooth Muscle Sheets,” Biomaterials 35 (2014): 7429–7440, https://doi.org/10.1016/j.biomaterials.2014.05.037.
S. Raghavan, R. R. Gilmont, E. A. Miyasaka, et al., “Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter,” Gastroenterology 141, no. 1 (2011): 310–319, https://doi.org/10.1053/j.gastro.2011.03.056.
S. Schrenk, A. Schuster, M. Klotz, et al., “Vascular and Neural Stem Cells in the Gut: Do They Need Each Other?,” Histochemistry and Cell Biology 143, no. 4 (2015): 397–410, https://doi.org/10.1007/s00418‐014‐1288‐9.
K. T. Walsh and A. E. Zemper, “The Enteric Nervous System for Epithelial Researchers: Basic Anatomy, Techniques, and Interactions With the Epithelium,” Cellular and Molecular Gastroenterology and Hepatology 8 (2019): 369–378, https://doi.org/10.1016/j.jcmgh.2019.05.003.
S. La Francesca, J. M. Aho, M. R. Barron, et al., “Long‐Term Regeneration and Remodeling of the Pig Esophagus After Circumferential Resection Using a Retrievable Synthetic Scaffold Carrying Autologous Cells,” Scientific Reports 8 (2018): 4123, https://doi.org/10.1038/s41598‐018‐22401‐x.
M. Marzaro, G. Pozzato, S. Tedesco, et al., “Decellularized Esophageal Tubular Scaffold Microperforated by Quantum Molecular Resonance Technology and Seeded With Mesenchymal Stromal Cells for Tissue Engineering Esophageal Regeneration,” Frontiers in Bioengineering and Biotechnology 10 (2022): 912617, https://doi.org/10.3389/fbioe.2022.912617.
X. Wang, J. Jin, R. Hou, et al., “Differentiation of bMSCs on Biocompatible, Biodegradable, and Biomimetic Scaffolds for Largely Defected Tissue Repair,” ACS Applied Bio Materials 3, no. 1 (2020): 735–746, https://doi.org/10.1021/acsabm.9b01063.
P. Kuppan, S. Sethuraman, and U. M. Krishnan, “In Vitro Co‐Culture of Epithelial Cells and Smooth Muscle Cells on Aligned Nanofibrous Scaffolds,” Materials Science & Engineering. C, Materials for Biological Applications 81 (2017): 191–205, https://doi.org/10.1016/j.msec.2017.07.050.
P. Maghsoudlou, D. Ditchfield, D. H. Klepacka, et al., “Isolation of Esophageal Stem Cells With Potential for Therapy,” Pediatric Surgery International 30, no. 12 (2014): 1249–1256, https://doi.org/10.1007/s00383‐014‐3615‐6.
J. Kalabis, G. S. Wong, M. E. Vega, et al., “Isolation and Characterization of Mouse and Human Esophageal Epithelial Cells in 3D Organotypic Culture,” Nature Protocols 7, no. 2 (2012): 235–246, https://doi.org/10.1038/nprot.2011.437.
W. N. Sayej, C. Foster, T. Jensen, S. Chatfield, and C. Finck, “Expanding and Characterizing Esophageal Epithelial Cells Obtained From Children With Eosinophilic Esophagitis,” Pediatric Research 84, no. 2 (2018): 306–313, https://doi.org/10.1038/s41390‐018‐0033‐9.
A. K. Saxena, H. Ainoedhofer, and M. E. Höllwarth, “Culture of Ovine Esophageal Epithelial Cells and In Vitro Esophagus Tissue Engineering,” Tissue Engineering. Part C, Methods 16 (2010): 109–114, https://doi.org/10.1089/ten.TEC.2009.0145.
T. Macheiner, A. Kuess, J. Dye, and A. K. Saxena, “A Novel Method for Isolation of Epithelial Cells From Ovine Esophagus for Tissue Engineering,” Bio‐Medical Materials and Engineering 24 (2014): 1457–1468, https://doi.org/10.3233/bme‐130950.
A. K. Saxena, K. Kofler, H. Ainödhofer, and M. E. Höllwarth, “Esophagus Tissue Engineering: Hybrid Approach With Esophageal Epithelium and Unidirectional Smooth Muscle Tissue Component Generation In Vitro,” Journal of Gastrointestinal Surgery 13, no. 6 (2009): 1037–1043, https://doi.org/10.1007/s11605‐009‐0836‐4.
A. D. Hofmann, A. Hilfiker, A. Haverich, B. Andree, J. Kuebler, and B. Ure, “BioVaM in the Rat Model: A New Approach of Vascularized 3D Tissue for Esophageal Replacement,” European Journal of Pediatric Surgery 25, no. 2 (2015): 181–188, https://doi.org/10.1055/s‐0034‐1370778.
S. Eftekharzadeh, A. Akbarzadeh, N. Sabetkish, et al., “Esophagus Tissue Engineering: From Decellularization to In Vivo Recellularization in Two Sites,” Cell and Tissue Banking 23, no. 2 (2022): 301–312, https://doi.org/10.1007/s10561‐021‐09944‐6.
G. Levenson, A. Berger, J. Demma, et al., “Circumferential Esophageal Replacement by a Decellularized Esophageal Matrix in a Porcine Model,” Surgery 171, no. 2 (2022): 384–392, https://doi.org/10.1016/j.surg.2021.07.009.
R. G. Spurrier, A. L. Speer, X. Hou, W. N. El‐Nachef, and T. C. Grikscheit, “Murine and Human Tissue‐Engineered Esophagus Form From Sufficient Stem/Progenitor Cells and Do Not Require Microdesigned Biomaterials,” Tissue Engineering. Part A 21, no. 5‐6 (2015): 906–915, https://doi.org/10.1089/ten.TEA.2014.0357.
S. Das, W. J. Gordián‐Vélez, H. C. Ledebur, et al., “Innervation: The Missing Link for Biofabricated Tissues and Organs,” NPJ Regenerative Medicine 5 (2020): 11, https://doi.org/10.1038/s41536‐020‐0096‐1.
W. Pan, A. A. Rahman, R. Stavely, et al., “Schwann Cells in the Aganglionic Colon of Hirschsprung Disease Can Generate Neurons for Regenerative Therapy,” Stem Cells Translational Medicine 11 (2022): 1232–1244, https://doi.org/10.1093/stcltm/szac076.
M. Metzger, C. Caldwell, A. J. Barlow, A. J. Burns, and N. Thapar, “Enteric Nervous System Stem Cells Derived From Human Gut Mucosa for the Treatment of Aganglionic Gut Disorders,” Gastroenterology 136, no. 7 (2009): 2214–2225, https://doi.org/10.1053/j.gastro.2009.02.048.
M. Metzger, P. M. Bareiss, T. Danker, et al., “Expansion and Differentiation of Neural Progenitors Derived From the Human Adult Enteric Nervous System,” Gastroenterology 137, no. 6 (2009): 2063–2073, https://doi.org/10.1053/j.gastro.2009.06.038.
C. I. Hagl, S. Heumüller‐Klug, E. Wink, L. Wessel, and K. H. Schäfer, “The Human Gastrointestinal Tract, a Potential Autologous Neural Stem Cell Source,” PLoS One 8, no. 9 (2013): e72948, https://doi.org/10.1371/journal.pone.0072948.
W. Pan, A. A. Rahman, T. Ohkura, et al., “Autologous Cell Transplantation for Treatment of Colorectal Aganglionosis in Mice,” Nature Communications 15, no. 1 (2024): 2479, https://doi.org/10.1038/s41467‐024‐46793‐9.
E. Zakhem, S. Raghavan, and K. N. Bitar, “Neo‐Innervation of a Bioengineered Intestinal Smooth Muscle Construct Around Chitosan Scaffold,” Biomaterials 35 (2014): 1882–1889, https://doi.org/10.1016/j.biomaterials.2013.11.049.
S. Raghavan, E. A. Miyasaka, R. R. Gilmont, S. Somara, D. H. Teitelbaum, and K. N. Bitar, “Perianal Implantation of Bioengineered Human Internal Anal Sphincter Constructs Intrinsically Innervated With Human Neural Progenitor Cells,” Surgery 155, no. 4 (2014): 668–674, https://doi.org/10.1016/j.surg.2013.12.023.
R. Stavely, R. Hotta, N. Picard, et al., “Schwann Cells in the Subcutaneous Adipose Tissue Have Neurogenic Potential and Can Be Used for Regenerative Therapies,” Science Translational Medicine 14, no. 646 (2022): eabl8753, https://doi.org/10.1126/scitranslmed.abl8753.
J. L. Mueller, R. Stavely, R. Hotta, and A. M. Goldstein, “Peripheral Nervous System: A Promising Source of Neuronal Progenitors for Central Nervous System Repair,” Frontiers in Neuroscience 16 (2022): 970350, https://doi.org/10.3389/fnins.2022.970350.
M. Lam, T. Sanosaka, A. Lundin, et al., “Single‐Cell Study of Neural Stem Cells Derived From Human iPSCs Reveals Distinct Progenitor Populations With Neurogenic and Gliogenic Potential,” Genes to Cells 24, no. 12 (2019): 836–847, https://doi.org/10.1111/gtc.12731.
M. J. Workman, M. M. Mahe, S. Trisno, et al., “Engineered Human Pluripotent‐Stem‐Cell‐Derived Intestinal Tissues With a Functional Enteric Nervous System,” Nature Medicine 23, no. 1 (2017): 49–59, https://doi.org/10.1038/nm.4233.
K. Saito‐Diaz, H. F. Wu, and N. Zeltner, “Autonomic Neurons With Sympathetic Character Derived From Human Pluripotent Stem Cells,” Current Protocols in Stem Cell Biology 49 (2019): e78, https://doi.org/10.1002/cpsc.78.
D. Shimojo, K. Onodera, Y. Doi‐Torii, et al., “Rapid, Efficient, and Simple Motor Neuron Differentiation From Human Pluripotent Stem Cells,” Molecular Brain 8, no. 1 (2015): 79, https://doi.org/10.1186/s13041‐015‐0172‐4.
M. Boleken, S. Demirbilek, H. Kirimiloglu, et al., “Reduced Neuronal Innervation in the Distal End of the Proximal Esophageal Atretic Segment in Cases of Esophageal Atresia With Distal Tracheoesophageal Fistula,” World Journal of Surgery 31, no. 7 (2007): 1512–1517, https://doi.org/10.1007/s00268‐007‐9070‐y.
S. F. Badylak, D. A. Vorp, A. R. Spievack, et al., “Esophageal Reconstruction With ECM and Muscle Tissue in a Dog Model,” Journal of Surgical Research 128 (2005): 87–97, https://doi.org/10.1016/j.jss.2005.03.002.
G. Gundogdu, D. Morhardt, V. Cristofaro, et al., “Evaluation of Bilayer Silk Fibroin Grafts for Tubular Esophagoplasty in a Porcine Defect Model,” Tissue Engineering. Part A 27, no. 1–2 (2021): 103–116, https://doi.org/10.1089/ten.TEA.2020.0061.
H. Nishimune and K. Shigemoto, “Practical Anatomy of the Neuromuscular Junction in Health and Disease,” Neurologic Clinics 36 (2018): 231–240, https://doi.org/10.1016/j.ncl.2018.01.009.
T. J. Hibberd, J. Feng, J. Luo, et al., “Optogenetic Induction of Colonic Motility in Mice,” Gastroenterology 155 (2018): 514–528.e516, https://doi.org/10.1053/j.gastro.2018.05.029.
E. D. Lowenstein, P. L. Ruffault, A. Misios, et al., “Prox2 and Runx3 Vagal Sensory Neurons Regulate Esophageal Motility,” Neuron 111, no. 14 (2023): 2184–2200.e7, https://doi.org/10.1016/j.neuron.2023.04.025.
B. D. Gulbransen, “Emerging Tools to Study Enteric Neuromuscular Function,” American Journal of Physiology. Gastrointestinal and Liver Physiology 312 (2017): G420–G426, https://doi.org/10.1152/ajpgi.00049.2017.
H. Kandori, “Biophysics of Rhodopsins and Optogenetics,” Biophysical Reviews 12 (2020): 355–361, https://doi.org/10.1007/s12551‐020‐00645‐0.
H. Tsukamoto and Y. Furutani, “Optogenetic Modulation of Ion Channels by Photoreceptive Proteins,” in Optogenetics: Light‐Sensing Proteins and Their Applications in Neuroscience and Beyond, ed. H. Yawo, H. Kandori, A. Koizumi, et al. (Springer Singapore, 2021), 73–88.
M. Liberman, M. Chavez, T. R. Nash, et al., “Engineering and Characterization of an Optogenetic Model of the Human Neuromuscular Junction,” Journal of Visualized Experiments 182 (2022): e63759, https://doi.org/10.3791/63759.
Y. Leng, X. Li, F. Zheng, et al., “Advances in In Vitro Models of Neuromuscular Junction: Focusing on Organ‐On‐a‐Chip, Organoids, and Biohybrid Robotics,” Advanced Materials 35, no. 41 (2023): e2211059, https://doi.org/10.1002/adma.202211059.
M. J. Castellanos‐Montiel, I. Velasco, and I. Escobedo‐Avila, “Modeling the Neuromuscular Junction In Vitro: An Approach to Study Neuromuscular Junction Disorders,” Annals of the New York Academy of Sciences 1488 (2021): 3–15, https://doi.org/10.1111/nyas.14504.
A. A. Rahman, R. Stavely, W. Pan, et al., “Optogenetic Activation of Cholinergic Enteric Neurons Reduces Inflammation in Experimental Colitis,” Cellular and Molecular Gastroenterology and Hepatology 17, no. 6 (2024): 907–921, https://doi.org/10.1016/j.jcmgh.2024.01.012.
A. C. Johnson, T. Louwies, C. O. Ligon, and B. Van Greenwood‐ Meerveld, “Enlightening the Frontiers of Neurogastroenterology Through Optogenetics,” American Journal of Physiology‐Gastrointestinal and Liver Physiology 319, no. 3 (2020): G391–G399, https://doi.org/10.1152/ajpgi.00384.2019.
B. Jespersen, N. R. Tykocki, S. W. Watts, et al., “Measurement of Smooth Muscle Function in the Isolated Tissue Bath‐Applications to Pharmacology Research,” Journal of Visualized Experiments 95 (2015): 52324, https://doi.org/10.3791/52324.
B. Lecea, D. Gallego, R. Farré, et al., “Regional Functional Specialization and Inhibitory Nitrergic and Nonnitrergic Coneurotransmission in the Human Esophagus,” American Journal of Physiology‐Gastrointestinal and Liver Physiology 300, no. 5 (2011): G782–G794, https://doi.org/10.1152/ajpgi.00514.2009.
K. Algarrahi, D. Franck, V. Cristofaro, et al., “Bi‐Layer Silk Fibroin Grafts Support Functional Tissue Regeneration in a Porcine Model of Onlay Esophagoplasty,” Journal of Tissue Engineering and Regenerative Medicine 12, no. 2 (2018): e894, https://doi.org/10.1002/term.2402.
R. K. Mittal, M. Ledgerwood, M. Caplin, P. Xu, W. Marquez‐Lavenant, and A. Zifan, “Impaired Sliding Between the Lower Esophageal Sphincter and Crural Diaphragm (Esophageal Hiatus) in Patients With Achalasia Esophagus,” American Journal of Physiology. Gastrointestinal and Liver Physiology 325, no. 4 (2023): G368–g378, https://doi.org/10.1152/ajpgi.00117.2023.
R. Hou, X. Wang, Q. Wei, et al., “Biological Properties of a Bionic Scaffold for Esophageal Tissue Engineering Research,” Colloids and Surfaces. B, Biointerfaces 179 (2019): 208–217, https://doi.org/10.1016/j.colsurfb.2019.03.072.
L. Hou, J. Jin, J. Lv, L. Chen, Y. Zhu, and X. Liu, “Constitution and In Vivo Test of Micro‐Porous Tubular Scaffold for Esophageal Tissue Engineering,” Journal of Biomaterials Applications 30, no. 5 (2015): 568–578, https://doi.org/10.1177/0885328215596285.
K. Suzuki, M. Komura, K. Obana, et al., “A New Method of Primary Engineering of Esophagus Using Orthotopic In‐Body Tissue Architecture,” Journal of Pediatric Surgery 56, no. 7 (2021): 1186–1191, https://doi.org/10.1016/j.jpedsurg.2021.03.025.
S. Sundaram, T. Jensen, T. Roffidal, et al., “Esophageal Regeneration Following Surgical Implantation of a Tissue Engineered Esophageal Implant in a Pediatric Model,” NPJ Regenerative Medicine 7, no. 1 (2022): 1, https://doi.org/10.1038/s41536‐021‐00200‐9.
B. Tan, M. Wang, X. Chen, et al., “Tissue Engineered Esophagus by Copper–Small Intestinal Submucosa Graft for Esophageal Repair in a Canine Model,” Science China. Life Sciences 57, no. 2 (2014): 248–255, https://doi.org/10.1007/s11427‐013‐4603‐0.
Y. Nakase, T. Nakamura, S. Kin, et al., “Intrathoracic Esophageal Replacement by In Situ Tissue‐Engineered Esophagus,” Journal of Thoracic and Cardiovascular Surgery 136, no. 4 (2008): 850–859, https://doi.org/10.1016/j.jtcvs.2008.05.027.
A. H. Koop, P. J. Kahrilas, J. Schauer, J. E. Pandolfino, and D. A. Carlson, “The Impact of Primary Peristalsis, Contractile Reserve, and Secondary Peristalsis on Esophageal Clearance Measured by Timed Barium Esophagogram,” Neurogastroenterology and Motility 35, no. 10 (2023): e14638, https://doi.org/10.1111/nmo.14638.
D. Razia, A. Trahan, C. Hu, L. Giulini, R. M. Bremner, and S. K. Mittal, “Association of Bolus Transit Time on Barium Esophagram With Esophageal Peristalsis on High‐Resolution Manometry and Nonobstructive Dysphagia,” Journal of Clinical Gastroenterology 56, no. 9 (2022): 748–755, https://doi.org/10.1097/mcg.0000000000001659.
D. A. Carlson, P. J. Kahrilas, Z. Lin, et al., “Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe,” American Journal of Gastroenterology 111, no. 12 (2016): 1726–1735, https://doi.org/10.1038/ajg.2016.454.
J. W. Chen, A. Khan, R. V. Chokshi, et al., “Interrater Reliability of Functional Lumen Imaging Probe Panometry and High‐Resolution Manometry for the Assessment of Esophageal Motility Disorders,” American Journal of Gastroenterology 118, no. 8 (2023): 1334–1343, https://doi.org/10.14309/ajg.0000000000002285.
E. White and M. Mutalib, “Use of Endolumenal Functional Lumen Imaging Probe in Investigating Paediatric Gastrointestinal Motility Disorders,” World Journal of Clinical Pediatrics 12, no. 4 (2023): 162–170, https://doi.org/10.5409/wjcp.v12.i4.162.
C. P. Gyawali and R. Penagini, “Clinical Usefulness of Esophageal High Resolution Manometry and Adjunctive Tests: An Update,” Digestive and Liver Disease 53 (2021): 1373–1380, https://doi.org/10.1016/j.dld.2021.04.007.
J. Kempf, H. Heinrich, C. E. Reusch, and P. H. Kook, “Evaluation of Esophageal High‐Resolution Manometry in Awake and Sedated Dogs,” American Journal of Veterinary Research 74 (2013): 895–900, https://doi.org/10.2460/ajvr.74.6.895.
W. O. A. Rohof and A. J. Bredenoord, “Chicago Classification of Esophageal Motility Disorders: Lessons Learned,” Current Gastroenterology Reports 19 (2017): 37, https://doi.org/10.1007/s11894‐017‐0576‐7.
R. Yadlapati, P. J. Kahrilas, M. R. Fox, et al., “Esophageal Motility Disorders on High‐Resolution Manometry: Chicago Classification Version 4.0(),” Neurogastroenterology and Motility 33 (2021): e14058, https://doi.org/10.1111/nmo.14058.
D. Wang, X. Wang, Y. Yu, et al., “Assessment of Esophageal Motor Disorders Using High‐Resolution Manometry in Esophageal Dysphagia With Normal Endoscopy,” Journal of Neurogastroenterology and Motility 25 (2019): 61–67, https://doi.org/10.5056/jnm18042.
P. Sharma and R. Yadlapati, “Evaluation of Esophageal Motility and Lessons From Chicago Classification Version 4.0,” Current Gastroenterology Reports 24 (2022): 10–17, https://doi.org/10.1007/s11894‐022‐00836‐7.
R. Yadlapati, J. E. Pandolfino, M. R. Fox, A. J. Bredenoord, and P. J. Kahrilas, “What Is New in Chicago Classification Version 4.0?,” Neurogastroenterology and Motility 33, no. 1 (2021): e14053, https://doi.org/10.1111/nmo.14053.
S. Roman, Z. Lin, J. E. Pandolfino, and P. J. Kahrilas, “Distal Contraction Latency: A Measure of Propagation Velocity Optimized for Esophageal Pressure Topography Studies,” American Journal of Gastroenterology 106, no. 3 (2011): 443–451, https://doi.org/10.1038/ajg.2010.414.
S. Sanagapalli, A. Plumb, R. V. Lord, and R. Sweis, “How to Effectively Use and Interpret the Barium Swallow: Current Role in Esophageal Dysphagia,” Neurogastroenterology and Motility 35, no. 10 (2023): e14605, https://doi.org/10.1111/nmo.14605.
J. D. Miller, B. P. Kemple, J. K. Evans, and S. B. Clayton, “A Comparison of Functional Luminal Imaging Probe With High‐Resolution Manometry, Timed Barium Esophagram, and pH Impedance Testing to Evaluate Functional Luminal Imaging Probe's Diagnostic Capabilities,” Journal of Clinical Gastroenterology 58, no. 10 (2024): 20240115, https://doi.org/10.1097/mcg.0000000000001966.
E. Savarino, M. di Pietro, A. J. Bredenoord, et al., “Use of the Functional Lumen Imaging Probe in Clinical Esophagology,” American Journal of Gastroenterology 115 (2020): 1786–1796, https://doi.org/10.14309/ajg.0000000000000773.
A. J. Bredenoord, F. Rancati, H. Lin, N. Schwartz, and M. Argov, “Normative Values for Esophageal Functional Lumen Imaging Probe Measurements: A Meta‐Analysis,” Neurogastroenterology and Motility 34, no. 11 (2022): e14419, https://doi.org/10.1111/nmo.14419.
D. A. Carlson, “Functional Lumen Imaging Probe: The FLIP Side of Esophageal Disease,” Current Opinion in Gastroenterology 32 (2016): 310–318, https://doi.org/10.1097/mog.0000000000000272.
I. Tachecí, V. Radochová, J. Květina, S. Rejchrt, M. Kopáčová, and J. Bureš, “Oesophageal Manometry in Experimental Pigs: Methods and Initial Experience,” Acta Medica (Hradec Králové) 58 (2015): 131–134, https://doi.org/10.14712/18059694.2016.5.
S. Rasch, P. T. Sangild, H. Gregersen, M. Schmidt, T. Omari, and C. Lau, “The Preterm Piglet – A Model in the Study of Oesophageal Development in Preterm Neonates,” Acta Paediatrica 99, no. 2 (2010): 201–208, https://doi.org/10.1111/j.1651‐2227.2009.01564.x.
Y. Vicente, C. da Rocha, G. Hernandez‐Peredo, R. Madero, and J. A. Tovar, “Esophageal Acid Clearance: More Volume‐Dependent Than Motility‐Dependent in Healthy Piglets,” Journal of Pediatric Gastroenterology and Nutrition 35 (2002): 173–179, https://doi.org/10.1097/00005176‐200208000‐00013.
Y. Vicente, C. da Rocha, B. Perez‐Mies, R. Madero, and J. A. Tovar, “Effect of Reflux and Esophagitis on Esophageal Volume and Acid Clearance in Piglets,” Journal of Pediatric Gastroenterology and Nutrition 38 (2004): 328–337, https://doi.org/10.1097/00005176‐200403000‐00019.
S. Acharya, S. Halder, D. A. Carlson, et al., “Assessment of Esophageal Body Peristaltic Work Using Functional Lumen Imaging Probe Panometry,” American Journal of Physiology‐Gastrointestinal and Liver Physiology 320, no. 2 (2021): G217–G226, https://doi.org/10.1152/ajpgi.00324.2020.
L. Giulini, A. R. Latorre‐Rodriguez, D. Razia, and S. K. Mittal, “Standardized Assessment of Esophageal Body Peristalsis on Barium Esophagram Correlates With Non‐Obstructive Dysphagia,” Journal of Gastrointestinal Surgery 27, no. 11 (2023): 2601–2603, https://doi.org/10.1007/s11605‐023‐05792‐9.
I. Hirano, J. E. Pandolfino, and G. E. Boeckxstaens, “Functional Lumen Imaging Probe for the Management of Esophageal Disorders: Expert Review From the Clinical Practice Updates Committee of the AGA Institute,” Clinical Gastroenterology and Hepatology 15 (2017): 325–334, https://doi.org/10.1016/j.cgh.2016.10.022.
H. Gregersen and K. M. Lo, “What Is the Future of Impedance Planimetry in Gastroenterology?,” Journal of Neurogastroenterology and Motility 24 (2018): 166–181, https://doi.org/10.5056/jnm18013.
S. Perretta, B. Dallemagne, G. Donatelli, P. Diemunsch, and J. Marescaux, “Transoral Endoscopic Esophageal Myotomy Based on Esophageal Function Testing in a Survival Porcine Model,” Gastrointestinal Endoscopy 73, no. 1 (2011): 111–116, https://doi.org/10.1016/j.gie.2010.09.009.
Y. C. Dorsey, S. Posner, and A. Patel, “Esophageal Functional Lumen Imaging Probe (FLIP): How Can FLIP Enhance Your Clinical Practice?,” Digestive Diseases and Sciences 65 (2020): 2473–2482, https://doi.org/10.1007/s10620‐020‐06443‐8.
B. T. Massey, “Flip Technology for Assessing Esophageal Structural and Motor Disorders: A Skeptic's View,” Current Gastroenterology Reports 22 (2020): 44, https://doi.org/10.1007/s11894‐020‐00782‐2.
W. Tian, X. Liu, X. Zhang, T. Bai, and B. Wu, “Self‐Assembly of Ultrafine Fibers With Micropores via Cryogenic Electrospinning and Its Potential Application in Esophagus Repair,” Polymers 14 (2022): 1924, https://doi.org/10.3390/polym14091924.
O. Syed, J. H. Kim, Z. Keskin‐Erdogan, et al., “SIS/Aligned Fibre Scaffold Designed to Meet Layered Oesophageal Tissue Complexity and Properties,” Acta Biomaterialia 99 (2019): 181–195, https://doi.org/10.1016/j.actbio.2019.08.015.
S. Pisani, S. Croce, S. Mauramati, et al., “Engineered Full Thickness Electrospun Scaffold for Esophageal Tissue Regeneration: From In Vitro to In Vivo Approach,” Pharmaceutics 14 (2022): 20220121, https://doi.org/10.3390/pharmaceutics14020252.
M. R. Barron, E. W. Blanco, J. M. Aho, et al., “Full‐Thickness Oesophageal Regeneration in Pig Using a Polyurethane Mucosal Cell Seeded Graft,” Journal of Tissue Engineering and Regenerative Medicine 12, no. 1 (2018): 175–185, https://doi.org/10.1002/term.2386.
I. G. Kim, Y. Wu, S. A. Park, et al., “Assessment of Esophageal Reconstruction via Bioreactor Cultivation of a Synthetic Scaffold in a Canine Model,” Clinical and Experimental Otorhinolaryngology 16, no. 2 (2023): 165–176, https://doi.org/10.21053/ceo.2022.01522.
M. Z. A. Zulkifli, D. Nordin, N. Shaari, and S. K. Kamarudin, “Overview of Electrospinning for Tissue Engineering Applications,” Polymers 15, no. 11 (2023): 2418, https://doi.org/10.3390/polym15112418.
T. Jensen, H. Wanczyk, I. Sharma, A. Mitchell, W. N. Sayej, and C. Finck, “Polyurethane Scaffolds Seeded With Autologous Cells Can Regenerate Long Esophageal Gaps: An Esophageal Atresia Treatment Model,” Journal of Pediatric Surgery 54, no. 9 (2019): 1744–1754, https://doi.org/10.1016/j.jpedsurg.2018.09.024.
M. Zhuravleva, Z. Gilazieva, T. E. Grigoriev, et al., “In Vitro Assessment of Electrospun Polyamide‐6 Scaffolds for Esophageal Tissue Engineering,” Journal of Biomedical Materials Research. Part B, Applied Biomaterials 107, no. 2 (2019): 253–268, https://doi.org/10.1002/jbm.b.34116.
H. Park, I. G. Kim, Y. Wu, et al., “Experimental Investigation of Esophageal Reconstruction With Electrospun Polyurethane Nanofiber and 3D Printing Polycaprolactone Scaffolds Using a Rat Model,” Head & Neck 43, no. 3 (2021): 833–848, https://doi.org/10.1002/hed.26540.
S. Soliman, J. Laurent, L. Kalenjian, K. Burnette, B. Hedberg, and S. La Francesca, “A Multilayer Scaffold Design With Spatial Arrangement of Cells to Modulate Esophageal Tissue Growth,” Journal of Biomedical Materials Research. Part B, Applied Biomaterials 107, no. 2 (2019): 324–331, https://doi.org/10.1002/jbm.b.34124.
Y. Wu, Y. G. Kang, I. G. Kim, et al., “Mechanical Stimuli Enhance Simultaneous Differentiation Into Oesophageal Cell Lineages in a Double‐Layered Tubular Scaffold,” Journal of Tissue Engineering and Regenerative Medicine 13, no. 8 (2019): 1394–1405, https://doi.org/10.1002/term.2881.
H. J. Jeong, H. Nam, J. Jang, and S. J. Lee, “3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs,” Bioengineering (Basel, Switzerland) 7, no. 2 (2020): 20200331, https://doi.org/10.3390/bioengineering7020032.
I. G. Kim, Y. Wu, S. A. Park, et al., “Tissue‐Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction,” Tissue Engineering. Part A 25, no. 21–22 (2019): 1478–1492, https://doi.org/10.1089/ten.TEA.2018.0277.
Y. Takeoka, K. Matsumoto, D. Taniguchi, et al., “Regeneration of Esophagus Using a Scaffold‐Free Biomimetic Structure Created With Bio‐Three‐Dimensional Printing,” PLoS One 14, no. 3 (2019): e0211339, https://doi.org/10.1371/journal.pone.0211339.
H. Nam, H. J. Jeong, Y. Jo, et al., “Multi‐Layered Free‐Form 3D Cell‐Printed Tubular Construct With Decellularized Inner and Outer Esophageal Tissue‐Derived Bioinks,” Scientific Reports 10, no. 1 (2020): 7255, https://doi.org/10.1038/s41598‐020‐64049‐6.
D. C. Codipilly, S. Faghani, C. Hagan, J. Lewis, B. J. Erickson, and P. G. Iyer, “The Evolving Role of Artificial Intelligence in Gastrointestinal Histopathology: An Update,” Clinical Gastroenterology and Hepatology 22, no. 6 (2024): 1170–1180, https://doi.org/10.1016/j.cgh.2023.11.044.
A. Larey, E. Aknin, N. Daniel, et al., “Harnessing Artificial Intelligence to Infer Novel Spatial Biomarkers for the Diagnosis of Eosinophilic Esophagitis,” Frontiers in Medicine 9 (2022): 950728, https://doi.org/10.3389/fmed.2022.950728.
A. Madabhushi, P. Toro, and J. E. Willis, “Artificial Intelligence in Surveillance of Barrett's Esophagus,” Cancer Research 81 (2021): 3446–3448, https://doi.org/10.1158/0008‐5472.Can‐21‐1511.
A. Zifan, J. M. Lee, and R. K. Mittal, “Enhancing the Diagnostic Yield of Esophageal Manometry Using Distension‐Contraction Plots of Peristalsis and Artificial Intelligence,” American Journal of Physiology‐Gastrointestinal and Liver Physiology 327 (2024): G405–G413, https://doi.org/10.1152/ajpgi.00139.2024.
W. Kou, G. O. Galal, M. W. Klug, et al., “Deep Learning‐Based Artificial Intelligence Model for Identifying Swallow Types in Esophageal High‐Resolution Manometry,” Neurogastroenterology and Motility 34, no. 7 (2022): e14290, https://doi.org/10.1111/nmo.14290.
S. L. Popa, T. Surdea‐Blaga, D. L. Dumitrascu, et al., “Automatic Diagnosis of High‐Resolution Esophageal Manometry Using Artificial Intelligence,” Journal of Gastrointestinal and Liver Diseases 31, no. 4 (2022): 383–389, https://doi.org/10.15403/jgld‐4525.
M. D. Bermejillo Barrera, F. Franco‐Martínez, and A. Díaz Lantada, “Artificial Intelligence Aided Design of Tissue Engineering Scaffolds Employing Virtual Tomography and 3D Convolutional Neural Networks,” Materials (Basel, Switzerland) 14, no. 18 (2021): 5278, https://doi.org/10.3390/ma14185278.
K. Sun, R. Li, H. Li, and M. Fan, “Analysis and Demonstration of a Scaffold Finite Element Model for Cartilage Tissue Engineering,” ACS Omega 5, no. 50 (2020): 32411–32419, https://doi.org/10.1021/acsomega.0c04378.
D. Ali and S. Sen, “Finite Element Analysis of Mechanical Behavior, Permeability and Fluid Induced Wall Shear Stress of High Porosity Scaffolds With Gyroid and Lattice‐Based Architectures,” Journal of the Mechanical Behavior of Biomedical Materials 75 (2017): 262–270, https://doi.org/10.1016/j.jmbbm.2017.07.035.
A. Boccaccio, A. Ballini, C. Pappalettere, D. Tullo, S. Cantore, and A. Desiate, “Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering,” International Journal of Biological Sciences 7, no. 1 (2011): 112–132, https://doi.org/10.7150/ijbs.7.112.
H. A. Adly, A. Y. El‐Okby, A. A. Yehya, et al., “Circumferential Esophageal Reconstruction Using a Tissue‐Engineered Decellularized Tunica Vaginalis Graft in a Rabbit Model,” Journal of Pediatric Surgery 59, no. 8 (2024): 1486–1497, https://doi.org/10.1016/j.jpedsurg.2024.04.003.
W. Godefroy, L. Faivre, C. Sansac, et al., “Development and Qualification of Clinical Grade Decellularized and Cryopreserved Human Esophagi,” Scientific Reports 13, no. 1 (2023): 18283, https://doi.org/10.1038/s41598‐023‐45610‐5.
V. Agrawal, B. N. Brown, A. J. Beattie, T. W. Gilbert, and S. F. Badylak, “Evidence of Innervation Following Extracellular Matrix Scaffold‐Mediated Remodelling of Muscular Tissues,” Journal of Tissue Engineering and Regenerative Medicine 3 (2009): 590–600, https://doi.org/10.1002/term.200.
S. Raghavan, R. R. Gilmont, and K. N. Bitar, “Neuroglial Differentiation of Adult Enteric Neuronal Progenitor Cells as a Function of Extracellular Matrix Composition,” Biomaterials 34 (2013): 6649–6658, https://doi.org/10.1016/j.biomaterials.2013.05.023.
S. Yeleswarapu, S. Chameettachal, A. K. Bera, and F. Pati, “Smooth Muscle Matrix Bioink Promotes Myogenic Differentiation of Encapsulated Adipose‐Derived Stem Cells,” Journal of Biomedical Materials Research. Part A 110, no. 11 (2022): 1761–1773, https://doi.org/10.1002/jbm.a.37433.
A. Tong, Q. L. Pham, P. Abatemarco, et al., “Review of Low‐Cost 3D Bioprinters: State of the Market and Observed Future Trends,” SLAS Technology: Translating Life Sciences Innovation 26, no. 4 (2021): 333–366, https://doi.org/10.1177/24726303211020297.
K. Ioannidis, R. I. Danalatos, S. Champeris Tsaniras, et al., “A Custom Ultra‐Low‐Cost 3D Bioprinter Supports Cell Growth and Differentiation,” Frontiers in Bioengineering and Biotechnology 8 (2020): 580889, https://doi.org/10.3389/fbioe.2020.580889.
S. V. Murphy, P. De Coppi, and A. Atala, “Opportunities and Challenges of Translational 3D Bioprinting,” Nature Biomedical Engineering 4 (2020): 370–380, https://doi.org/10.1038/s41551‐019‐0471‐7.
J. F. Gomes Gama, E. A. Dias, R. M. G. Aguiar Coelho, A. M. Chagas, J. Aguiar Coelho Nt, and L. A. Alves, “Development and Implementation of a Significantly Low‐Cost 3D Bioprinter Using Recycled Scrap Material,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1108396, https://doi.org/10.3389/fbioe.2023.1108396.
Weitere Informationen
Background: Over the past decade, research involving the bioengineering of esophageal tissue replacements for repair of congenital defects, cancer, and caustic injuries has advanced rapidly. This is due to the development of innovative biomaterials combined with stem cells that recapitulate tissue ultrastructure, mechanics, and biochemical properties. However, a limitation in the field is a lack of data demonstrating development of innervated tissue exhibiting peristalsis. Currently, no clinically available stem cell therapies/esophageal tissue substitutes exist that restore motility.
Purpose: This review will discuss advances and limitations in the assessment of esophageal motility in bioengineered tissues along with metrics of success. Additionally, innovative technologies (i.e., 3D bioprinting, electrospinning, and AI) and neuronal cellular approaches for promoting gut innervation will be highlighted to reveal their use for the development of clinical therapies for esophageal replacement. Future directions for development of patient-specific implants will also be discussed to emphasize the importance of access to all populations.
(© 2025 John Wiley & Sons Ltd.)