Treffer: Comparing Physics-Based, Conceptual and Machine-Learning Models to Predict Groundwater Levels by BMA.
Original Publication: Worthington, Ohio : Water Well Journal Pub. Co.,
Adamowski, J., and H.F. Chan. 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology 407, no. 1: 28–40. https://doi.org/10.1016/j.jhydrol.2011.06.013.
Afzaal, H., A.A. Farooque, F. Abbas, B. Acharya, and T. Esau. 2020. Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning. Water 12, no. 1: 5. https://doi.org/10.3390/w12010005.
Althoff, D., and L.N. Rodrigues. 2021. Goodness‐of‐fit criteria for hydrological models: Model calibration and performance assessment. Journal of Hydrology 600: 126674. https://doi.org/10.1016/j.jhydrol.2021.126674.
Ardana, P.D.H., W. Redana, M.I. Yekti, and N. Simpen. 2022. Groundwater level forecasting using multiple linear regression and artificial neural network approaches. Civil Engineering and Architecture 10, no. 3: 784–799. https://doi.org/10.13189/cea.2022.100304.
von Asmuth, J.R., K. Maas, M. Knotters, M.F.P. Bierkens, M. Bakker, T.N. Olsthoorn, D.G. Cirkel, I. Leunk, F. Schaars, and D.C. von Asmuth. 2012. Software for hydrogeologic time series analysis, interfacing data with physical insight. Environmental Modelling & Software 38: 178–190. https://doi.org/10.1016/j.envsoft.2012.06.003.
von Asmuth, J.R., K. Maas, M. Bakker, and J. Petersen. 2008. Modeling time series of ground water head fluctuations subjected to multiple stresses. Groundwater 46, no. 1: 30–40. https://doi.org/10.1111/j.1745‐6584.2007.00382.x.
von Asmuth, J., M. Bierkens, and K. Maas. 2002. Transfer function‐noise modeling in continuous time using predefined impulse response functions. Water Resources Research 38, no. 12: 23‐1–23‐12. https://doi.org/10.1029/2001WR001136.
Bakker, M., and F. Schaars. 2019. Solving groundwater flow problems with time series analysis: You may not even need another model. Groundwater 57, no. 6: 826–833. https://doi.org/10.1111/gwat.12927.
Basher, L.R., I.H. Lynn, and I.E. Whitehouse. 1995. Geomorphology of the Wairau Plains Implications for Floodplain Management Planning. Landcare Research Science Series11. Lincoln: Manaaki Whenua Press.
Bidwell, V.J. 2005. Realistic forecasting of groundwater level, based on the eigenstructure of aquifer dynamics. Mathematics and Computers in Simulation 69, no. 1: 12–20. https://doi.org/10.1016/j.matcom.2005.02.023.
Bidwell, V.J., R. Stenger, and G.F. Barkle. 2008. Dynamic analysis of groundwater discharge and partial‐area contribution to Pukemanga stream, New Zealand. Hydrology and Earth System Sciences 14: 975–987.
Boo, K.B.W., A. El‐Shafie, F. Othman, M.M.H. Khan, A.H. Birima, and A.N. Ahmed. 2024a. Groundwater level forecasting with machine learning models: A review. Water Research 252: 121249. https://doi.org/10.1016/j.watres.2024.121249.
Boo, K.B.W., A. El‐Shafie, F. Othman, M. Sherif, and A.N. Ahmed. 2024b. Groundwater level forecasting using ensemble coactive neuro‐fuzzy inference system. Science of the Total Environment 912: 168760. https://doi.org/10.1016/j.scitotenv.2023.168760.
Booker, D., and T. Snelder. 2012. Comparing methods for estimating flow duration curves at ungauged sites. Journal of Hydrology 434–435: 78–94. https://doi.org/10.1016/j.jhydrol.2012.02.031.
Bowes, B.D., J.M. Sadler, M.M. Morsy, M. Behl, and J.L. Goodall. 2019. Forecasting groundwater table in a flood prone Coastal City with long short‐term memory and recurrent neural networks. Water 11, no. 5: 1098. https://doi.org/10.3390/w11051098.
Breiman, L. 2001. Random forests. Machine Learning 45, no. 1: 5–32. https://doi.org/10.1023/A:1010933404324.
Bright, J., A. Dark, J. Weir, and E. Alexander. 2023 Agile, Adaptive Water Allocation Policy. MPI Technical Paper 2023/14, Ministry for Primary Industries, New Zealand.
Brown, L.J. 1981. Late quaternary geology of the Wairau Plain, Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 24: 477–490.
Chen, C., W. He, H. Zhou, Y. Xue, and M. Zhu. 2020. A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific Reports 10, no. 1: 3904. https://doi.org/10.1038/s41598‐020‐60698‐9.
Cinkus, G., N. Mazzilli, H. Jourde, A. Wunsch, T. Liesch, N. Ravbar, Z. Chen, and N. Goldscheider. 2023. When best is the enemy of good – Critical evaluation of performance criteria in hydrological models. Hydrology and Earth System Sciences 27, no. 13: 2397–2411. https://doi.org/10.5194/hess‐27‐2397‐2023.
Clark, M.P., A.G. Slater, D.E. Rupp, R.A. Woods, J.A. Vrugt, H.V. Gupta, T. Wagener, and L.E. Hay. 2008. Framework for understanding structural errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resources Research 44: WR006735.
Collenteur, R.A., E. Haaf, M. Bakker, T. Liesch, A. Wunsch, J. Soonthornrangsan, J. White, N. Martin, R. Hugman, M. Fienen, E. de Sousa, D. Vanden Berghe, X. Fan, T. Peterson, J. Bikše, A. Di Ciacca, X. Wang, Y. Zheng, M. Nölscher, J. Koch, R. Schneider, N. Benavides Höglund, S.K.R. Chidepudi, A. Henriot, N. Massei, A. Jardani, M.G. Rudolph, A. Rouhani, J. Gómez‐Hernández, S. Jomaa, A. Pölz, T. Franken, M. Behbooei, J. Lin, B. Tolson, and R. Meysami. 2024. Data‐driven modeling of hydraulic head time series: Results and lessons learned from the 2022 groundwater modeling challenge. Hydrology and Earth System Sciences Discussions 2024: 1–21. https://doi.org/10.5194/hess‐2024‐111.
Collenteur, R.A., M. Bakker, R. Caljé, S.A. Klop, and F. Schaars. 2019. Pastas: Open source software for the analysis of groundwater time series. Groundwater 57, no. 6: 877–885. https://doi.org/10.1111/gwat.12925.
Condon, L.E., S. Kollet, M.F.P. Bierkens, G.E. Fogg, R.M. Maxwell, M.C. Hill, H.J.H. Fransen, A. Verhoef, A.F. Van Loon, M. Sulis, and C. Abesser. 2021. Global groundwater modeling and monitoring: Opportunities and challenges. Water Resources Research 57, no. 12: WR029500. https://doi.org/10.1029/2020WR029500.
Daliakopoulos, I.N., P. Coulibaly, and I.K. Tsanis. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309, no. 1: 229–240. https://doi.org/10.1016/j.jhydrol.2004.12.001.
Davidson, P., and S.R. Wilson. 2011. Groundwaters of Marlborough. Christchurch: Marlborough District Council.
Diersch, H. 2014. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Berlin: Springer.
Doherty, J.E. 2016a. PEST, Model‐Independent Parameter Estimation, User Manual Part I, 6th ed. Brisbane: Watermark Numerical Computing.
Doherty, J.E. 2016b. PEST, Model‐Independent Parameter Estimation User Manual Part II: PEST Utility Support Software, 6th ed. Brisbane: Watermark Numerical Computing.
Doherty, J. 2003. Ground water model calibration using pilot points and regularization. Groundwater 41, no. 2: 170–177.
Doherty, J.E., M.N. Fienen, and R.J. Hunt. 2010 Approaches to highly parameterized inversion: Pilot‐point theory, guidelines, and research directions. Scientific Investigations Report 2010‐5168, U.S. Geological Survey.
Ejaz, F., T. Wöhling, M. Höge, and W. Nowak. 2022. Lumped geohydrological modelling for long‐term predictions of groundwater storage and depletion. Journal of Hydrology 606: 127347. https://doi.org/10.1016/j.jhydrol.2021.127347.
Elshall, A.S., A.D. Arik, A.I. El‐Kadi, S. Pierce, M. Ye, K.M. Burnett, C.A. Wada, L.L. Bremer, and G. Chun. 2020. Groundwater sustainability: A review of the interactions between science and policy. Environmental Research Letters 15, no. 9: 093004. https://doi.org/10.1088/1748‐9326/ab8e8c.
Fatichi, S., E.R. Vivoni, F.L. Ogden, V.Y. Ivanov, B. Mirus, D. Gochis, C.W. Downer, M. Camporese, J.H. Davison, B. Ebel, N. Jones, J. Kim, G. Mascarom, R. Niswonger, P. Restrepo, R. Rigon, C. Shen, M. Sulis, and D. Tarboton. 2016. An overview of current applications, challenges, and future trends in distributed process‐based models in hydrology. Journal of Hydrology 537: 45–60.
Fenicia, F., D. Kavetski, and H.H.G. Savenije. 2011. Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development. Water Resources Research 47, no. 11: W11510. https://doi.org/10.1029/2010wr010174.
Fienen, M.N., J.P. Masterson, N.G. Plant, B.T. Gutierrez, and E.R. Thieler. 2013. Bridging groundwater models and decision support with a Bayesian network. Water Resources Research 49, no. 10: 6459–6473. https://doi.org/10.1002/wrcr.20496.
Gosses, M., and T. Wöhling. 2019. Simplification error analysis for groundwater predictions with reduced order models. Advances in Water Resources 125: 41–56. https://doi.org/10.1016/j.advwatres.2019.01.006.
Gupta, H.V., H. Kling, K.K. Yilmaz, and G.F. Martinez. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology 377, no. 1–2: 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.
Guthke, A. 2017. Defensible model complexity: A call for data‐based and goal‐oriented model choice. Groundwater 55, no. 5: 646–650.
Hamza, M., and D. Larocque. 2005. An empirical comparison of ensemble methods based on classification trees. Journal of Statistical Computation and Simulation 75, no. 8: 629–643. https://doi.org/10.1080/00949650410001729472.
Harbaugh, A. 2005. MODFLOW‐2005, the U.S. Geological Survey modular ground‐water model – The Ground‐Water Flow Process: U.S. Geological Survey Techniques and Methods 6‐A16., U.S. Geological Survey.
Hochreiter, S., and J. Schmidhuber. 1997. Long short‐term memory. Neural Computation 9, no. 11: 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.
Hoeting, J.A., D. Madigan, A.E. Raftery, and C.T. Volinsky. 1999. Bayesian model averaging: A tutorial. Statistical Science 14, no. 4: 382–417.
Höge, M., A. Guthke, and W. Nowak. 2019. The hydrologists guide to Bayesian model selection, averaging and combination. Journal of Hydrology 572: 96–107.
Höge, M., T. Wöhling, and W. Nowak. 2018. A primer for model selection: The decisive role of model complexity. Water Resources Research 54, no. 3: 1688–1715. https://doi.org/10.1002/2017WR021902.
Hong, Y.M., and S. Wan. 2011. Forecasting groundwater level fluctuations for rainfall‐induced landslide. Natural Hazards 57, no. 2: 167–184. https://doi.org/10.1007/s11069‐010‐9603‐9.
Iraola, A., M. Pool, A. Nardi, E. Vilanova, J. Molinero, and M. Dentz. 2024. A hybrid analytical and machine learning framework for groundwater resources management. EGU General Assembly 2024, Vienna, Austria, 14‐19 Apr 2024, EGU24‐18672. https://doi.org/10.5194/egusphere‐egu24‐18672.
Jasechko, S., H. Seybold, D. Perrone, Y. Fan, M. Shamsudduha, R.G. Taylor, O. Fallatah, and J.W. Kirchner. 2024. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, no. 7996: 715–721. https://doi.org/10.1038/s41586‐023‐06879‐8.
Knoben, W.J.M., J.E. Freer, and R.A. Woods. 2019. Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences 23, no. 10: 4323–4331. https://doi.org/10.5194/hess‐23‐4323‐2019.
Kouziokas, G.N., A. Chatzigeorgiou, and K. Perakis. 2018. Multilayer feed forward models in groundwater level forecasting using meteorological data in public management. Water Resources Management 32, no. 15: 5041–5052. https://doi.org/10.1007/s11269‐018‐2126‐y.
Li, B., G. Yang, R. Wan, X. Dai, and Y. Zhang. 2016. Comparison of random forests and other statistical methods for the prediction of lake water level: A case study of the Poyang lake in China. Hydrology Research 47, no. S1: 69–83. https://doi.org/10.2166/nh.2016.264.
Loos, M., and H. Elsenbeer. 2011. Topographic controls on overland flow generation in a forest – An ensemble tree approach. Journal of Hydrology 409, no. 1: 94–103. https://doi.org/10.1016/j.jhydrol.2011.08.002.
Maxwell, R.M. 2013. A terrain‐following grid transform and preconditioner for parallel, large‐scale, integrated hydrologic modeling. Advances in Water Resources 53: 109–117. https://doi.org/10.1016/j.advwatres.2012.10.001.
MCB. 1987. Water and Soil Resources of the Wairau: Water Resources, Vol. 1. Blenheim: Marlborough Catchment and Regional Water Board.
Moghaddam, H.K., H.K. Moghaddam, Z.R. Kivi, M. Bahreinimotlagh, and M.J. Alizadeh. 2019. Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development 9: 100237. https://doi.org/10.1016/j.gsd.2019.100237.
Morgenstern, U., P. Davidson, D.P. Townsend, P.A. White, R.W. van der Raaij, M.K. Steward, M. Moreau, and C. Daughney. 2019. From rain through river catchment to aquifer: The flow of water through the Wairau hydrologic system. GNS Science report 2019/63, GNS Science. https://doi.org/10.21420/7125‐ST46.
MRC. 2025. Marlborough Research Centre, Te Rito Hiranga o Wairau, Data for 1986–2023. https://www.mrc.org.nz/blenheim‐weather‐station (accessed January 23, 2025).
Müller, J., J. Park, R. Sahu, C. Varadharajan, B. Arora, B. Faybishenko, and D. Agarwal. 2021. Surrogate optimization of deep neural networks for groundwater predictions. Journal of Global Optimization 81, no. 1: 203–231. https://doi.org/10.1007/s10898‐020‐00912‐0.
Murphy, K.P. 2012. Machine Learning – A Probabilistic Perspective. Cambridge, MA: MIT Press.
Niswonger, R., S. Panday, and M. Ibaraki. 2011. MODFLOW‐NWT, A Newton formulation for MODFLOW‐2005. Techniques and Methods 6‐A37, U.S. Geological Survey. 44 p.
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit‐learn: Machine learning in Python. Journal of Machine Learning Research 12: 2825–2830.
Peterson, T.J., and A.W. Western. 2014. Nonlinear time‐series modeling of unconfined groundwater head. Water Resources Research 50, no. 10: 8330–8355. https://doi.org/10.1002/2013WR014800.
Pulido‐Velazquez, D., A. Sahuquillo, and J. Andreu. 2011. A conceptual‐numerical model to simulate hydraulic head in aquifers that are hydraulically connected to surface water bodies. Hydrological Processes 26, no. 10: 1435–1448. https://doi.org/10.1002/hyp.8214.
Pulido‐Velazquez, M.A., A. Sahuquillo‐Herraiz, J.C. Ochoa‐Rivera, and D. Pulido‐Velazquez. 2005. Modeling of stream‐aquifer interaction: The embedded multireservoir model. Journal of Hydrology 313, no. 3: 166–181.
Rahmati, O., H.R. Pourghasemi, and A.M. Melesse. 2016. Application of GIS‐based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 137: 360–372. https://doi.org/10.1016/j.catena.2015.10.010.
Raiber, M., P.A. White, C.J. Daughney, C. Tschritter, P. Davidson, and S.E. Bainbridge. 2012. Three‐dimensional geological modelling and multivariate statistical analysis of water chemistry data to analyse and visualise aquifer structure and groundwater composition in the Wairau Plain, Marlborough District, New Zealand. Journal of Hydrology 436‐437: 13–34.
Rajaee, T., H. Ebrahimi, and V. Nourani. 2019. A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology 572: 336–351. https://doi.org/10.1016/j.jhydrol.2018.12.037.
Rodriguez‐Galiano, V., M.P. Mendes, M.J. Garcia‐Soldado, M. Chica‐Olmo, and L. Ribeiro. 2014. Predictive modeling of groundwater nitrate pollution using random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (southern Spain). Science of the Total Environment 476–477: 189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001.
Rudolph, M.G., R.A. Collenteur, A. Kavousi, M. Giese, T. Wöhling, S. Birk, A. Hartmann, and T. Reimann. 2023. A data‐driven approach for modelling Karst spring discharge using transfer function noise models. Environmental Earth Sciences 82, no. 13: 339. https://doi.org/10.1007/s12665‐023‐11012‐z.
Sahoo, S., and M.K. Jha. 2015. On the statistical forecasting of groundwater levels in unconfined aquifer systems. Environmental Earth Sciences 73, no. 7: 3119–3136. https://doi.org/10.1007/s12665‐014‐3608‐8.
Sahoo, S., and M.K. Jha. 2013. Groundwater‐level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeology Journal 21, no. 8: 1865–1887. https://doi.org/10.1007/s10040‐013‐1029‐5.
Sahu, R.K., J. Müller, J. Park, C. Varadharajan, B. Arora, B. Faybishenko, and D. Agarwal. 2020. Impact of input feature selection on groundwater level prediction from a multi‐layer perceptron neural network. Frontiers in Water 2: 573034. https://doi.org/10.3389/frwa.2020.573034.
Sahuquillo, A. 1983. An eigenvalue numerical technique for solving unsteady linear groundwater models continuously in time. Water Resources Research 19, no. 1: 87–93. https://doi.org/10.1029/wr019i001p00087.
Sapitang, M., W.M. Ridwan, A.N. Ahmed, C.M. Fai, and A. El‐Shafie. 2021. Groundwater level as an input to monthly predicting of water level using various machine learning algorithms. Earth Science Informatics 14, no. 3: 1269–1283. https://doi.org/10.1007/s12145‐021‐00654‐x.
Schöniger, A., W. Illman, T. Wöhling, and W. Nowak. 2015. Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection. Journal of Hydrology 531, no. 1: 96–110. https://doi.org/10.1016/j.jhydrol.2015.07.047.
Schöniger, A., T. Wöhling, L. Samaniego, and W. Nowak. 2014. Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence. Water Resources Research 50, no. 12: 9484–9513. https://doi.org/10.1002/2014WR016062.
Schoups, G., and J.A. Vrugt. 2010. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non‐Gaussian errors. Water Resorces Research 46: W10531. https://doi.org/10.1029/2009WR008933.
Seppelt, R. 2003. Computer‐Based Environmental Management. New York: John Wiley & Sons. https://doi.org/10.1017/s1466046605250159.
Siade, A.J., M. Putti, and W.W.G. Yeh. 2012. Reduced order parameter estimation using quasilinearization and quadratic programming. Water Resources Research 48, no. 6: W06502. https://doi.org/10.1029/2011WR011471.
Spieler, D., J. Mai, J.R. Craig, B.A. Tolson, and N. Schütze. 2020. Automatic model structure identification for conceptual hydrologic models. Water Resources Research 56, no. 9: e2019WR027009. https://doi.org/10.1029/2019WR027009.
Sun, J., L. Hu, D. Li, K. Sun, and Z. Yang. 2022. Data‐driven models for accurate groundwater level prediction and their practical significance in groundwater management. Journal of Hydrology 608: 127630. https://doi.org/10.1016/j.jhydrol.2022.127630.
Tait, A., R. Henderson, R. Turner, and X.G. Zheng. 2006. Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. International Journal of Climatology 26, no. 14: 2097–2115. https://doi.org/10.1002/joc.1350.
Tao, H., M.M. Hameed, H.A. Marhoon, M. Zounemat‐Kermani, S. Heddam, S. Kim, S.O. Sulaiman, M.L. Tan, Z. Saadi, A.D. Mehr, M.F. Allawi, S.I. Abba, J.M. Zain, M.W. Falah, M. Jamei, N.D. Bokde, M. Bayatvarkeshi, M. Al‐Mukhtar, S.K. Bhagat, T. Tiyasha, K.M. Khedher, N. Al‐Ansari, S. Shahid, and Z.M. Yaseen. 2022. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 489: 271–308. https://doi.org/10.1016/j.neucom.2022.03.014.
Therrien, R., R. McLaren, E. Sudicky, and S. Panday. 2010. HydroGeoSphere: A three‐dimensional numerical model describing fully‐integrated subsurface and surface flow and solute transport. University of Waterloo.
Thiemig, V., R. Rojas, M. Zambrano‐Bigiarini, and A. De Roo. 2013. Hydrological evaluation of satellite‐based rainfall estimates over the Volta and Baro‐Akobo Basin. Journal of Hydrology 499: 324–338. https://doi.org/10.1016/j.jhydrol.2013.07.012.
Thomann, J.A., A.D. Werner, D.J. Irvine, and M.J. Currell. 2020. Adaptive management in groundwater planning and development: A review of theory and applications. Journal of Hydrology 586: 124871. https://doi.org/10.1016/j.jhydrol.2020.124871.
Tonkin, M., and J. Doherty. 2009. Calibration‐constrained Monte Carlo analysis of highly parameterized models using subspace techniques. Water Resources Research 45: W00B10.
Towner, J., H.L. Cloke, E. Zsoter, Z. Flamig, J.M. Hoch, J. Bazo, E. Coughlan de Perez, and E.M. Stephens. 2019. Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin. Hydrology and Earth System Sciences 23, no. 7: 3057–3080. https://doi.org/10.5194/hess‐23‐3057‐2019.
Wang, X., T. Liu, X. Zheng, H. Peng, J. Xin, and B. Zhang. 2018. Short‐term prediction of groundwater level using improved random forest regression with a combination of random features. Applied Water Science 8, no. 5: 125. https://doi.org/10.1007/s13201‐018‐0742‐6.
Wetzel, M., S. Kunz, M. Nölscher, A. Schulz, F. Biessmann, and S. Broda. 2024. Advancing water resource management: Insights and implications from global machine learning models in groundwater prediction. EGU General Assembly 2024, Vienna, Austria, 14‐19 Apr 2024, EGU24‐11647. https://doi.org/10.5194/egusphere‐egu24‐11647.
Wilson, S.R. 2016. Wairau Aquifer stratigraphy review. Technical Report 1053‐1‐R1, Lincoln Agritech Ltd.
Wilson, S., and T. Wöhling. 2015 Wairau River – Wairau aquifer interaction. Envirolink Report 1514‐MLDC96, Lincoln Agritech Ltd.
Wöhling, T. 2019. Natürliche und anthropogene Einflussfaktoren auf das hydrologische Regime des Wairau Plain Aquifer in Neuseeland. Hydrologie und Wasserbewirtschaftung 63, no. H3: 130–140. https://doi.org/10.5675/HyWa (in German).
Wöhling, T., and L. Burbery. 2020. Eigenmodels to forecast groundwater levels in unconfined river‐fed aquifers during flow recession. Science of the Total Environment 747: 141220.
Wöhling, T., S. Wilson, V. Wadsworth, and P. Davidson. 2020. Detecting the cause of change using uncertain data: Natural and anthropogenic factors contributing to declining groundwater levels and flows of the Wairau Plain aquifer, New Zealand. Journal of Hydrology: Regional Studies 31, no. 10: 100715. https://doi.org/10.1016/j.ejrh.2020.100715.
Wöhling, T., M.J. Gosses, S.R. Wilson, and P. Davidson. 2018. Quantifying river‐groundwater interactions of New Zealand's gravel‐bed rivers: The Wairau Plain. Groundwater 56, no. 4: 647–666. https://doi.org/10.1111/gwat.12625.
Wöhling, T., A. Schöniger, S. Gayler, and W. Nowak. 2015. Bayesian model averaging to explore the worth of data for soil‐plant model selection and prediction. Water Resources Research 51, no. 4: 2825–2846. https://doi.org/10.1002/2014WR016292.
Wöhling, T., L. Samaniego, and R. Kumar. 2013. Evaluating multiple performance criteria to calibrate the distributed hydrological model of the Upper Neckar catchment. Environmental Earth Sciences 69, no. 2: 453–468. https://doi.org/10.1007/s12665‐013‐2306‐2 Special Issue on Catchment Research.
Wöhling, T., and J.A. Vrugt. 2011. Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data. Water Resources Research 47: W04510. https://doi.org/10.1029/2010WR009265.
Wong, H., and B. Clarke. 2019. Improvement over bayes prediction in small samples in the presence of model uncertainty. Canadian Journal of Statistics 32, no. 3: 269–283. https://doi.org/10.2307/3315929.
Woodward, S.J.R., T. Wöhling, M. Rode, and R. Stenger. 2017. Predicting nitrate discharge dynamics in mesoscale catchments using the lumped StreamGEM model and Bayesian parameter inference. Journal of Hydrology 552: 684–703. https://doi.org/10.1016/j.jhydrol.2017.07.021.
Wu, C., X. Zhang, W. Wang, C. Lu, Y. Zhang, W. Qin, G.R. Tick, B. Liu, and L. Shu. 2021. Groundwater level modeling framework by combining the wavelet transform with a long short‐term memory data‐driven model. Science of the Total Environment 783: 146948. https://doi.org/10.1016/j.scitotenv.2021.146948.
Wunsch, A., T. Liesch, and N. Goldscheider. 2024. Towards understanding the influence of seasons on low‐groundwater periods based on explainable machine learning. Hydrology and Earth System Sciences 28, no. 9: 2167–2178. https://doi.org/10.5194/hess‐28‐2167‐2024.
Wunsch, A., T. Liesch, and S. Broda. 2022. Deep learning shows declining groundwater levels in Germany until 2100 due to climate change. Nature Communications 13, no. 1: 1221. https://doi.org/10.1038/s41467‐022‐28770‐2.
Wunsch, A., T. Liesch, and S. Broda. 2021. Groundwater level forecasting with artificial neural networks: A comparison of long short‐term memory (LSTM), convolutional neural networks (CNNs), and non‐linear autoregressive networks with exogenous input (NARX). Hydrology and Earth System Sciences 25, no. 3: 1671–1687. https://doi.org/10.5194/hess‐25‐1671‐2021.
Wunsch, A., T. Liesch, and S. Broda. 2018. Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). Journal of Hydrology 567, no. 12: 743–758. https://doi.org/10.1016/j.jhydrol.2018.01.045.
Yin, W., Z. Fan, N. Tangdamrongsub, L. Hu, and M. Zhang. 2021. Comparison of physical and data‐driven models to forecast groundwater level changes with the inclusion of GRACE – A case study over the state of Victoria, Australia. Journal of Hydrology 602, no. 11: 126735. https://doi.org/10.1016/j.jhydrol.2021.126735.
Zaadnoordijk, W.J., S.A.R. Bus, A. Lourens, and W.L. Berendrecht. 2019. Automated time series modeling for piezometers in the national database of The Netherlands. Groundwater 57, no. 6: 834–843. https://doi.org/10.1111/gwat.12819.
Zare, M., and M. Koch. 2018. Groundwater level fluctuations simulation and prediction by ANFIS‐ and hybrid Wavelet‐ANFIS/Fuzzy C‐Means (FCM) clustering models: Application to the Miandarband plain. Journal of Hydro‐Environment Research 18: 63–76. https://doi.org/10.1016/j.jher.2017.11.004.
Zhang, Y.K., and Z. Li. 2006. Effect of temporally correlated recharge on fluctuations of groundwater levels. Water Resources Research 42, no. 10: W10412. https://doi.org/10.1029/2005WR004828.
Weitere Informationen
Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational forecasting. In this study, we compare different model classes for this task: a spatially explicit 3D groundwater flow model (MODFLOW), an eigenmodel, a transfer-function model, and three machine learning models, namely, multi-layer perceptron models, long short-term memory models, and random forest models. The models differ widely in their complexity, input requirements, calibration effort, and run-times. They are tested on four groundwater level time series from the Wairau Aquifer in New Zealand to investigate the potential of the data-driven approaches to outperform the MODFLOW model in predicting individual target wells. Further, we wish to reveal whether the MODFLOW model has advantages in predicting all four wells simultaneously because it can use the available information in a physics-based, integrated manner, or whether structural limitations spoil this effect. Our results demonstrate that data-driven models with low input requirements and short run-times are competitive candidates for local groundwater level predictions even for system states that lie outside the calibration data range. There is no "single best" model that performs best in all cases, which motivates ensemble forecasting with different model classes using Bayesian model averaging. The obtained Bayesian model weights clearly favor MODFLOW when targeting all wells simultaneously, even though the competing approaches had the chance to fine-tune for each tested well individually. This is a remarkable result that strengthens the argument for physics-based approaches even for seemingly "simple" groundwater level prediction tasks.
(© 2025 The Author(s). Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association.)