Treffer: An operating system for executing applications on quantum network nodes.

Title:
An operating system for executing applications on quantum network nodes.
Authors:
Delle Donne C; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.; Quantum Computer Science, Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands., Iuliano M; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., van der Vecht B; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.; Quantum Computer Science, Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands., Ferreira GM; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Jirovská H; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., van der Steenhoven TJW; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Dahlberg A; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.; Quantum Computer Science, Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands., Skrzypczyk M; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.; Quantum Computer Science, Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands., Fioretto D; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria., Teller M; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria., Filippov P; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria., Montblanch AR; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Fischer J; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., van Ommen HB; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Demetriou N; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Leichtle D; LIP6, CNRS, Sorbonne Université, Paris, France., Music L; LIP6, CNRS, Sorbonne Université, Paris, France., Ollivier H; QAT, DIENS, Ecole Normale Supérieure, PSL University, CNRS, INRIA, Paris, France., Te Raa I; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Kozlowski W; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Taminiau TH; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Pawełczak P; Embedded Systems, Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands., Northup TE; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria., Hanson R; QuTech, Delft University of Technology, Delft, The Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands., Wehner S; QuTech, Delft University of Technology, Delft, The Netherlands. s.d.c.wehner@tudelft.nl.; Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands. s.d.c.wehner@tudelft.nl.; Quantum Computer Science, Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands. s.d.c.wehner@tudelft.nl.
Source:
Nature [Nature] 2025 Mar; Vol. 639 (8054), pp. 321-328. Date of Electronic Publication: 2025 Mar 12.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
References:
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008). (PMID: 1856315310.1038/nature07127)
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018). (PMID: 3033738310.1126/science.aam9288)
van Meter, R. Quantum Networking (Wiley, 2014).
Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012). (PMID: 2226780610.1126/science.1214707)
Drmota, P. et al. Verifiable blind quantum computing with trapped ions and single photons. Phys. Rev. Lett. 132, 150604 (2024). (PMID: 3868296010.1103/PhysRevLett.132.150604)
Nadlinger, D. Device-independent Key Distribution Between Trapped-ion Quantum Network Nodes. Thesis, Univ. Oxford (2022).
Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022). (PMID: 35614248913277310.1038/s41586-022-04697-y)
Iuliano, M. et al. Qubit teleportation between a memory-compatible photonic time-bin qubit and a solid-state quantum network node. npj Quantum Inf. 10, 107 (2024). (PMID: 10.1038/s41534-024-00910-0)
Matsukevich, D., Maunz, P., Hayes, D., Duan, L.-M. & Monroe, C. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009). (PMID: 1916474410.1126/science.1167209)
Langenfeld, S. et al. Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett. 126, 130502 (2021). (PMID: 3386109010.1103/PhysRevLett.126.130502)
Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014). (PMID: 2508269610.1126/science.1253512)
Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018). (PMID: 3018590810.1038/s41586-018-0470-y)
Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal Blind Quantum Computation. Proc. 2009 50th Annual IEEE Symposium on Foundations of Computer Science 517–526 (IEEE, 2009).
Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013). (PMID: 10.1016/j.physrep.2013.02.001)
Childress, L. & Hanson, R. Diamond NV centers for quantum computing and quantum networks. MRS Bull. 38, 134–138 (2013). (PMID: 10.1557/mrs.2013.20)
Fioretto, D. Towards a Flexible Source for Indistinguishable Photons Based on Trapped Ions and Cavities. PhD thesis, Univ. Innsbruck (2020).
Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007). (PMID: 1780529010.1038/nature06118)
Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012). (PMID: 2249862510.1038/nature11023)
Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012). (PMID: 2276792410.1126/science.1221856)
Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017). (PMID: 2873176410.1103/PhysRevLett.119.010503)
Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020). (PMID: 3224269910.1103/PhysRevLett.124.110501)
Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021). (PMID: 3385902810.1126/science.abg1919)
Krutyanskiy, V. et al. Entanglement of trapped-ion qubits separated by 230 meters. Phys. Rev. Lett. 130, 050803 (2023). (PMID: 3680044810.1103/PhysRevLett.130.050803)
van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022). (PMID: 35794269925949910.1038/s41586-022-04764-4)
Stolk, A. J. et al. Metropolitan-scale heralded entanglement of solid-state qubits. Sci. Adv. 10, eadp6442 (2024). (PMID: 394756171152417710.1126/sciadv.adp6442)
Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024). (PMID: 387502311109611210.1038/s41586-024-07252-z)
Ben-Or, M. & Hassidim, A. Fast Quantum Byzantine Agreement. Proc. Thirty-seventh Annual ACM Symposium on Theory of Computing (STOC ’05) 481–485 (ACM, 2005).
Poremba, A. Quantum proofs of deletion for learning with errors. Preprint at https://arxiv.org/abs/2203.01610 (2022).
Guérin, P. A., Feix, A., Araújo, M. & Brukner, Č. Exponential communication complexity advantage from quantum superposition of the direction of communication. Phys. Rev. Lett. 117, 100502 (2016). (PMID: 2763646010.1103/PhysRevLett.117.100502)
Childs, A. M. Secure assisted quantum computation. Quantum Inf. Comput. 5, 456–466 (2005).
Liu, W.-Z. et al. Toward a photonic demonstration of device-independent quantum key distribution. Phys. Rev. Lett. 129, 050502 (2022). (PMID: 3596058510.1103/PhysRevLett.129.050502)
Zhang, W. et al. A device-independent quantum key distribution system for distant users. Nature 607, 687–691 (2022). (PMID: 35896650932912410.1038/s41586-022-04891-y)
Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photon. 13, 210–213 (2019). (PMID: 10.1038/s41566-018-0342-x)
Dahlberg, A. et al. A Link Layer Protocol for Quantum Networks. Proc. ACM Special Interest Group on Data Communication (SIGCOMM ’19) 159–173 (ACM, 2019).
Kozlowski, W., Dahlberg, A. & Wehner, S. Designing a quantum network protocol. in Proc. 16th International Conference on emerging Networking EXperiments and Technologies (CoNEXT ’20) 1–16 (ACM, 2020).
Aliro Security, Advanced Secure Networking. https://www.aliroquantum.com (2024).
Pirker, A. & Dü, W. A quantum network stack and protocols for reliable entanglement-based networks. New J. Phys. 21, 033003 (2019). (PMID: 10.1088/1367-2630/ab05f7)
Pompili, M. et al. Experimental demonstration of entanglement delivery using a quantum network stack. npj Quantum Inf. 8, 121 (2022). (PMID: 10.1038/s41534-022-00631-2)
Monga, I., Saglamyurek, E., Kissel, E., Haffner, H. & Wu, W. in Proc. 1st Workshop on Quantum Networks and Distributed Quantum Computing (QuNet ’23) 31–37 (ACM, 2023).
Castells, M. in Ch@nge: 19 Key Essays on How the Internet Is Changing Our Lives 127–148 (BBVA, 2013).
Quantum Software Development Kits in 2024. AIMultiple: High Tech Use Cases & Tools to Grow Your Business. https://research.aimultiple.com/quantum-sdk/ (2024).
Ma, Y., Kashefi, E., Arapinis, M., Chakraborty, K. & Kaplan, M. QEnclave - a practical solution for secure quantum cloud computing. npj Quantum Inf. 8, 128 (2022). (PMID: 10.1038/s41534-022-00612-5)
Lidar, D. A. & Brun, T. A. Quantum Error Correction (Cambridge Univ. Press, 2013).
Botelho, L. et al. Error mitigation for variational quantum algorithms through mid-circuit measurements. Phys. Rev. A 105, 022441 (2022). (PMID: 10.1103/PhysRevA.105.022441)
Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022). (PMID: 10.1103/RevModPhys.94.015004)
Bertels, K. et al. Quantum computer architecture toward full-stack quantum accelerators. IEEE Trans. Quantum Eng. 1, 1–17 (2020). (PMID: 10.1109/TQE.2020.2981074)
Fu, X. et al. eQASM: An Executable Quantum Instruction Set Architecture. Proc. 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA) 224–237 (IEEE, 2019).
Giortamis, E., Romão, F., Tornow, N. & Bhatotia, P. QOS: a quantum operating system. Preprint at https://arxiv.org/abs/2406.19120 (2024).
Kong, W. et al. Origin Pilot: a quantum operating system for effecient usage of quantum resources. Preprint at https://arxiv.org/abs/2105.10730 (2021).
Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018). (PMID: 2989947510.1038/s41586-018-0200-5)
Skrzypczyk, M. & Wehner, S. An architecture for meeting quality-of-service requirements in multi-user quantum networks. Preprint at https://arxiv.org/abs/2111.13124 (2021).
Drmota, P. et al. Robust quantum memory in a trapped-ion quantum network node. Phys. Rev. Lett. 130, 090803 (2023). (PMID: 3693090910.1103/PhysRevLett.130.090803)
Krutyanskiy, V. et al. Light-matter entanglement over 50 km of optical fibre. npj Quantum Inf. 5, 72 (2019). (PMID: 10.1038/s41534-019-0186-3)
Vardoyan, G., Skrzypczyk, M. & Wehner, S. On the quantum performance evaluation of two distributed quantum architectures. Perform. Eval. 153, 102242 (2022). (PMID: 10.1016/j.peva.2021.102242)
McCullough, J. D., Speierman, K. H. & Zurcher, F. W. in Proc. November 30–December 1, 1965, Fall Joint Computer Conference, Part I (AFIPS ‘65 (Fall, part I)) 611–617 (ACM, 1965).
Dennis, J. B. Segmentation and the design of multiprogrammed computer systems. J. ACM 12, 589–602 (1965). (PMID: 10.1145/321296.321310)
Dennis, J. B. & Van Horn, E. C. Programming semantics for multiprogrammed computations. Commun. ACM 9, 143–155 (1966). (PMID: 10.1145/365230.365252)
Tanenbaum, A. S. & Woodhull, A. S. Operating Systems Design and Implementation 3rd edn (Prentice-Hall, 2005).
Dahlberg, A. et al. NetQASM—a low-level instruction set architecture for hybrid quantum–classical programs in a quantum internet. Quantum Sci. Technol. 7, 035023 (2022). (PMID: 10.1088/2058-9565/ac753f)
Teller, M. et al. Integrating a fiber cavity into a wheel trap for strong ion–cavity coupling. AVS Quantum Sci. 5, 012001 (2023). (PMID: 10.1116/5.0121534)
Teller, M. et al. Heating of a trapped ion induced by dielectric materials. Phys. Rev. Lett. 126, 230505 (2021). (PMID: 3417018010.1103/PhysRevLett.126.230505)
Zurich Instruments. HDAWG, 750 MHz Arbitrary Waveform Generator. Zurich Instruments https://www.zhinst.com/europe/en/products/hdawg-arbitrary-waveform-generator (2019).
Liu, C. L. & Layland, J. W. Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20, 46–61 (1973). (PMID: 10.1145/321738.321743)
Daley, R. C. & Dennis, J. B. Virtual memory, processes, and sharing in Multics. Commun. ACM 11, 306–312 (1968). (PMID: 10.1145/363095.363139)
Peterson, J. L. & Silberschatz, A. Operating System Concepts 2nd edn (Addison-Wesley, 1985).
Chesson, G. L. The network UNIX system. ACM SIGOPS Oper. Syst. Rev. 9, 60–66 (1975). (PMID: 10.1145/1067629.806522)
Leach, P. et al. The architecture of an integrated local network. IEEE J. Sel. Areas Commun. 1, 842–857 (1983). (PMID: 10.1109/JSAC.1983.1146002)
Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259 (1995). (PMID: 1005897510.1103/PhysRevLett.74.1259)
Ramamritham, K. & Stankovic, J. A. Scheduling algorithms and operating systems support for real-time systems. Proc. IEEE 82, 55–67 (1994). (PMID: 10.1109/5.259426)
Caleffi, M. et al. Distributed quantum computing: a survey. Comput. Netw. 254, 110672 (2024). (PMID: 10.1016/j.comnet.2024.110672)
ADwin-Pro II – flexible and modular. https://www.adwin.de/us/produkte/proII.html (2024).
De Lange, G., Wang, Z., Riste, D., Dobrovitski, V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010). (PMID: 2082945210.1126/science.1192739)
Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018). (PMID: 29959326602618310.1038/s41467-018-04916-z)
Corna, A. Efficient generation of dynamic pulses. Zurich Instruments https://www.zhinst.com/europe/en/blogs/efficient-generation-dynamic-pulses (2021).
FreeRTOS. Real-time operating system for microcontrollers and small microprocessors. FreeRTOS https://www.freertos.org/ (2024).
MicroZed. Development board based on the Zynq-7000 SoC. Avnet https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/microzed/ (2024).
Teller, M. Measuring and Modeling Electric-field Noise in an Ion-cavity System. PhD thesis, Univ. Innsbruck (2021).
LAUNCHXL2-RM57L. Hercules RM57Lx LaunchPad Development Kit. Texas Instruments https://www.ti.com/tool/LAUNCHXL2-RM57L (2024).
CY8CKIT-143A. Infineon Technologies https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-143a/ (2024).
Paris, M. & Rehacek, J. Quantum State Estimation Vol. 649 (Springer, 2004).
Cabrillo, C., Cirac, J. I., García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999). (PMID: 10.1103/PhysRevA.59.1025)
Bose, S., Knight, P. L., Plenio, M. B. & Vedral, V. Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999). (PMID: 10.1103/PhysRevLett.83.5158)
Hermans, S. L. N. et al. Entangling remote qubits using the single-photon protocol: an in-depth theoretical and experimental study. New J. Phys. 25, 013011 (2023). (PMID: 10.1088/1367-2630/acb004)
Robledo, L., Bernien, H., van Weperen, I. & Hanson, R. Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. Phys. Rev. Lett. 105, 177403 (2010). (PMID: 2123107910.1103/PhysRevLett.105.177403)
NetQASM. GitHub https://github.com/QuTech-Delft/netqasm (2024).
Entry Date(s):
Date Created: 20250313 Date Completed: 20250313 Latest Revision: 20250319
Update Code:
20250319
PubMed Central ID:
PMC11903313
DOI:
10.1038/s41586-025-08704-w
PMID:
40075182
Database:
MEDLINE

Weitere Informationen

The goal of future quantum networks is to enable new internet applications that are impossible to achieve using only classical communication <sup>1-3</sup> . Up to now, demonstrations of quantum network applications <sup>4-6</sup> and functionalities <sup>7-12</sup> on quantum processors have been performed in ad hoc software that was specific to the experimental setup, programmed to perform one single task (the application experiment) directly into low-level control devices using expertise in experimental physics. Here we report on the design and implementation of an architecture capable of executing quantum network applications on quantum processors in platform-independent high-level software. We demonstrate the capability of the architecture to execute applications in high-level software by implementing it as a quantum network operating system-QNodeOS-and executing test programs, including a delegated computation from a client to a server <sup>13</sup> on two quantum network nodes based on nitrogen-vacancy (NV) centres in diamond <sup>14,15</sup> . We show how our architecture allows us to maximize the use of quantum network hardware by multitasking different applications. Our architecture can be used to execute programs on any quantum processor platform corresponding to our system model, which we illustrate by demonstrating an extra driver for QNodeOS for a trapped-ion quantum network node based on a single <sup>40</sup> Ca <sup>+</sup> atom <sup>16</sup> . Our architecture lays the groundwork for computer science research in quantum network programming and paves the way for the development of software that can bring quantum network technology to society.
(© 2025. The Author(s).)

Competing interests: C.D.D., B.v.d.V., A.D., M.S., I.t.R., W.K. and S.W. have filed a patent on the QNodeOS architecture.