Treffer: Diffusion-prepared imaging with amplitude navigation for correction of motion-induced signal loss.
Original Publication: San Diego : Academic Press,
Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: technique and applications. World J Radiol. 2016;8:785‐798. doi:10.4329/wjr.v8.i9.785.
Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient. J Chem Phys. 1965;42:288‐292.
Zhang Q, Coolen BF, Versluis MJ, Strijkers GJ, Nederveen AJ. Diffusion‐prepared stimulated‐echo turbo spin echo (DPsti‐TSE): an eddy current‐insensitive sequence for three‐dimensional high‐resolution and undistorted diffusion‐weighted imaging. NMR Biomed. 2017;30:1‐12. doi:10.1002/nbm.3719.
Gibbons EK, Vasanawala SS, Pauly JM, Kerr AB. Body diffusion‐weighted imaging using magnetization prepared single‐shot fast spin echo and extended parallel imaging signal averaging. Magn Reson Med. 2018;79:3032‐3044. doi:10.1002/mrm.26971.
Cervantes B, Van AT, Weidlich D, et al. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase‐corrected diffusion‐prepared 3D turbo spin echo. Magn Reson Med. 2018;80:609‐618. doi:10.1002/mrm.27072.
Zhang Q, Coolen BF, Nederveen AJ, Strijkers GJ. Three‐dimensional diffusion imaging with spiral encoded navigators from stimulated echoes (3D‐DISPENSE). Magn Reson Med. 2019;81:1052‐1065. doi:10.1002/mrm.27470.
Lee PK, Yoon D, Sandberg JK, Vasanawala SS, Hargreaves BA. Volumetric and multispectral DWI near metallic implants using a non‐linear phase Carr‐Purcell‐Meiboom‐gill diffusion preparation. Magn Reson Med. 2022;87:2650‐2666. doi:10.1002/mrm.29153.
Jeong EK, Kim SE, Parker DL. High‐resolution diffusion‐weighted 3D MRI, using diffusion‐weighted driven‐equilibrium (DW‐DE) and multishot segmented 3D‐SSFP without navigator echoes. Magn Reson Med. 2003;50:821‐829. doi:10.1002/mrm.10593.
Gao Y, Han F, Zhou Z, et al. Multishot diffusion‐prepared magnitude‐stabilized balanced steady‐state free precession sequence for distortion‐free diffusion imaging. Magn Reson Med. 2019;81:2374‐2384. doi:10.1002/mrm.27565.
Afzali M, Mueller L, Sakaie K, et al. MR fingerprinting with b‐tensor encoding for simultaneous quantification of relaxation and diffusion in a single scan. Magn Reson Med. 2022;88:2043‐2057. doi:10.1002/mrm.29352.
Cao X, Liao C, Zhou Z, et al. DTI‐MR fingerprinting for rapid high‐resolution whole‐brain T1, T2, proton density, ADC, and fractional anisotropy mapping. Magn Reson Med. 2024;91:987‐1001. doi:10.1002/mrm.29916.
Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med. 2003;50:343‐353. doi:10.1002/mrm.10531.
Lee PK, Zhou X, Hargreaves BA. Robust multishot diffusion‐weighted imaging of the abdomen with region‐based shot rejection. Magn Reson Med. 2024;92:519‐531. doi:10.1002/mrm.30102.
Prasad PV, Nalcioglu O. A modified pulse sequence for in vivo diffusion imaging with reduced motion artifacts. Magn Reson Med. 1991;18:116‐131. doi:10.1002/mrm.1910180113.
Norris DG. Implications of bulk motion for diffusion‐weighted imaging experiments: effects, mechanisms, and solutions. J Magn Reson Imaging. 2001;13:486‐495. doi:10.1002/jmri.1072.
Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DL, Larkman DJ. Nonlinear phase correction of navigated multi‐coil diffusion images. Magn Reson Med. 2006;56:1135‐1139. doi:10.1002/mrm.21046.
Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo. Magn Reson Med. 2003;49:177‐182. doi:10.1002/mrm.10308.
Michael ES, Hennel F, Pruessmann KP. Motion‐compensated diffusion encoding in multi‐shot human brain acquisitions: insights using high‐performance gradients. Magn Reson Med. 2024;92:556‐572. doi:10.1002/mrm.30069.
Hannum AJ, Cork TE, Setsompop K, Ennis DB. Phase stabilization with motion compensated diffusion weighted imaging. Magn Reson Med. 2024;92:2312‐2327. doi:10.1002/mrm.30218.
Weigel M. Extended phase graphs: dephasing, RF pulses, and echoes ‐ pure and simple. J Magn Reson Imaging. 2015;41:266‐295. doi:10.1002/jmri.24619.
Leon‐Garcia A. Probability, Statistics, and Random Processes for Electrical Engineering. Pearson/Prentice Hall; 2008.
Liu C, Moseley ME, Bammer R. Simultaneous phase correction and SENSE reconstruction for navigated multi‐shot DWI with non‐cartesian k‐space sampling. Magn Reson Med. 2005;54:1412‐1422. doi:10.1002/mrm.20706.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952‐962.
Golub GH, Loan CFV. Matrix Computations. fourth ed. The Johns Hopkins University Press; 2013.
Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson Imaging. 2012;36:55‐72. doi:10.1002/jmri.23639.
Levine E, Hargreaves B. On‐the‐Fly adaptive k$$ k $$ ‐space sampling for linear MRI reconstruction using moment‐based spectral analysis. IEEE Trans Med Imaging. 2018;37:557‐567. doi:10.1109/TMI.2017.2766131.
Varga RS. Geršgorin and his Circles. Springer; 2004.
Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med. 2006;55:1030‐1037. doi:10.1002/mrm.20863.
Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000;43:682‐690.
Uecker M, Lai P, Murphy MJ, et al. ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med. 2014;71:990‐1001. doi:10.1002/mrm.24751.
Buehrer M, Pruessmann KP, Boesiger P, Kozerke S. Array compression for MRI with large coil arrays. Magn Reson Med. 2007;57:1131‐1139. doi:10.1002/mrm.21237.
Sacolick LI, Wiesinger F, Hancu I, Vogel MW. B1 mapping by Bloch‐Siegert shift. Magn Reson Med. 2010;63:1315‐1322. doi:10.1002/mrm.22357.
Keenan KE, Wilmes LJ, Aliu SO, et al. Design of a breast phantom for quantitative MRI. J Magn Reson Imaging. 2016;44:610‐619. doi:10.1002/jmri.25214.
Chen NK, Guidon A, Chang HC, Song AW. A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE). NeuroImage. 2013;72:41‐47. doi:10.1016/j.neuroimage.2013.01.038.
Skare S, Andersson JL. On the effects of gating in diffusion imaging of the brain using single shot EPI. Magn Reson Imaging. 2001;19:1125‐1128. doi:10.1016/s0730‐725x(01)00415‐5.
Sung K, Daniel BL, Hargreaves BA. Transmit B1+ field inhomogeneity and T1 estimation errors in breast DCE‐MRI at 3 tesla. J Magn Reson Imaging. 2013;38:454‐459. doi:10.1002/jmri.23996.
Roberts NT, Hinshaw LA, Colgan TJ, Ii T, Hernando D, Reeder SB. B0 and B1 inhomogeneities in the liver at 1.5 T and 3.0 T. Magn Reson Med. 2021;85:2212‐2220. doi:10.1002/mrm.28549.
Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A. Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology. 1986;161:527‐531. doi:10.1148/Radiology.161.2.3763926.
Blaimer M, Gutberlet M, Kellman P, Breuer FA, Köstler H, Griswold MA. Virtual coil concept for improved parallel MRI employing conjugate symmetric signals. Magn Reson Med. 2009;61:93‐102. doi:10.1002/mrm.21652.
Alsop DC. Phase insensitive preparation of single‐shot RARE: application to diffusion imaging in humans. Magn Reson Med. 1997;38:527‐533.
Williams CF, Redpath TW, Norris DG. A novel fast split‐echo multi‐shot diffusion‐weighted MRI method using navigator echoes. Magn Reson Med. 1999;41:734‐742.
Le Roux P. Non‐CPMG fast spin Echo with full signal. J Magn Reson. 2002;155:278‐292. doi:10.1006/jmre.2002.2523.
Lee PK, Hargreaves BA. A joint linear reconstruction for multishot diffusion weighted non‐Carr‐Purcell‐Meiboom‐gill fast spin echo with full signal. Magn Reson Med. 2022;88:2139‐2156. doi:10.1002/mrm.29393.
Weitere Informationen
Purpose: Diffusion-prepared imaging is a flexible alternative to conventional spin-echo diffusion-weighted EPI that allows selection of different imaging readouts and k-space traversals, and permits control of image contrast or image artifacts. We investigate a new signal model and reconstruction for diffusion-prepared imaging that addresses signal variations caused by motion-sensitizing diffusion gradients.
Methods: A signal model, sampling theory, and reconstruction framework were developed assuming that motion-induced phases and the measured signals are random variables. The reconstruction incorporates real-valued amplitude weights estimated from low-resolution images into a linear system. A diffusion-prepared sequence was applied in phantom and in vivo acquisitions using different methods for managing phase errors from eddy currents or motion. This acquisition was performed with a high number of NEX and retrospectively undersampled to analyze errors in ADC estimation, and compared to spin-echo diffusion-weighted EPI, as well as conventional diffusion-prepared methods. The B <subscript>1</subscript> sensitivity of the sequence was investigated using simulation and phantom experiments.
Results: Images reconstructed using the proposed method had similar image structures when compared to conventional spin-echo diffusion-weighted EPI, and demonstrated improved SNR efficiency compared to previous diffusion-prepared approaches. ADC errors followed a trend consistent with the derived signal model, sampling theory, and expected B <subscript>1</subscript> sensitivity. The sampling requirement was shown to depend on the magnitude of motion-induced phases, as well as phases from residual eddy currents.
Conclusion: Employing amplitude weights in the reconstruction of a diffusion-prepared sequence can improve SNR efficiency at the cost of a greater minimum sampling time and increased sensitivity to B <subscript>1</subscript> inhomogeneity.
(© 2025 International Society for Magnetic Resonance in Medicine.)