Treffer: A single-fibre computer enables textile networks and distributed inference.

Title:
A single-fibre computer enables textile networks and distributed inference.
Authors:
Gupta N; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA., Cheung H; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA., Payra S; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Electrical Engineering, Stanford University, Stanford, CA, USA., Loke G; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA., Li J; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA., Zhao Y; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA., Balachander L; Textiles Department, Rhode Island School of Design, Providence, RI, USA., Son E; Textiles Department, Rhode Island School of Design, Providence, RI, USA., Li V; Department of Computer Science, Brown University, Providence, RI, USA., Kravitz S; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA., Lohawala S; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA., Joannopoulos J; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA., Fink Y; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA. yoel@mit.edu.; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. yoel@mit.edu.
Source:
Nature [Nature] 2025 Mar; Vol. 639 (8053), pp. 79-86. Date of Electronic Publication: 2025 Feb 26.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
References:
Dunn, J., Runge, R. & Snyder, M. Wearables and the medical revolution. Per Med. 15, 429–448 (2018). (PMID: 3025980110.2217/pme-2018-0044)
Yetisen, A. K., Martinez‐Hurtado, J. L., Ünal, B., Khademhosseini, A. & Butt, H. Wearables in medicine. Adv. Mater. 30, e1706910 (2018). (PMID: 2989306810.1002/adma.201706910)
Martin, T., Jovanov, E. & Raskovic, D. Issues in wearable computing for medical monitoring applications: a case study of a wearable ECG monitoring device. In Digest of Papers. Fourth International Symposium on Wearable Computers 43–49 (IEEE Computer Society, 2000).
Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011). (PMID: 2183600910.1126/science.1206157)
Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017). (PMID: 2890174610.1021/acsnano.7b04898)
Yang, G.-Z., Andreu-Perez, J., Hu, X. & Thiemjarus, S. in Body Sensor Networks (ed. Yang, G.-Z.) 301–354 (Springer, 2014).
Muzammal, M., Talat, R., Sodhro, A. H. & Pirbhulal, S. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inf. Fusion 53, 155–164 (2020). (PMID: 10.1016/j.inffus.2019.06.021)
Gravina, R., Alinia, P., Ghasemzadeh, H. & Fortino, G. Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf. Fusion 35, 68–80 (2017). (PMID: 10.1016/j.inffus.2016.09.005)
Tamura, T., Maeda, Y., Sekine, M. & Yoshida, M. Wearable photoplethysmographic sensors—past and present. Electronics (Basel) 3, 282–302 (2014).
Mathie, M. J., Coster, A. C. F., Lovell, N. H. & Celler, B. G. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 25, R1–R20 (2004). (PMID: 1513230510.1088/0967-3334/25/2/R01)
Wicaksono, I. et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flexible Electron. 4, 5 (2020). (PMID: 10.1038/s41528-020-0068-y)
Shi, J. et al. Smart textile‐integrated microelectronic systems for wearable applications. Adv. Mater. 32, e1901958 (2020). (PMID: 3127385010.1002/adma.201901958)
Chen, G. et al. Electronic textiles for wearable point-of-care systems. Chem. Rev. 122, 3259–3291 (2022). (PMID: 3493979110.1021/acs.chemrev.1c00502)
Yan, W. et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, e1802348 (2019). (PMID: 3027282910.1002/adma.201802348)
Yan, W. et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020). (PMID: 10.1016/j.mattod.2019.11.006)
Bayindir, M., Abouraddy, A. F., Arnold, J., Joannopoulos, J. D. & Fink, Y. Thermal‐sensing fiber devices by multimaterial codrawing. Adv. Mater. 18, 845–849 (2006). (PMID: 10.1002/adma.200502106)
Zhang, T. et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41, 35–42 (2017). (PMID: 10.1016/j.nanoen.2017.09.019)
Yan, W. et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022). (PMID: 3529686010.1038/s41586-022-04476-9)
Gumennik, A. et al. All‐in‐fiber chemical sensing. Adv. Mater. 24, 6005–6009 (2012). (PMID: 2302764410.1002/adma.201203053)
Pan, Z. et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Mater. 25, 124–130 (2020). (PMID: 10.1016/j.ensm.2019.10.023)
Qu, Y. et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, e1707251 (2018). (PMID: 2979914310.1002/adma.201707251)
Xiong, T. et al. Photo-powered all-in-one energy harvesting and storage fibers towards low-carbon smart wearables. Energy Storage Mater. 65, 103146 (2024). (PMID: 10.1016/j.ensm.2023.103146)
Khudiyev, T. et al. Thermally drawn rechargeable battery fiber enables pervasive power. Mater. Today 52, 80–89 (2022). (PMID: 10.1016/j.mattod.2021.11.020)
Dong, C. et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11, 3537 (2020). (PMID: 32669555736381510.1038/s41467-020-17345-8)
Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). (PMID: 3369255910.1038/s41586-021-03295-8)
Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015). (PMID: 2559917710.1038/nbt.3093)
Hwang, S. et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13, 3173 (2022). (PMID: 35676280917803410.1038/s41467-022-30894-4)
Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018). (PMID: 3008992110.1038/s41586-018-0390-x)
Danto, S., Ruff, Z., Wang, Z., Joannopoulos, J. D. & Fink, Y. Ovonic memory switching in multimaterial fibers. Adv. Funct. Mater. 21, 1095–1101 (2011). (PMID: 10.1002/adfm.201002252)
Danto, S. et al. Fiber field‐effect device via in situ channel crystallization. Adv. Mater. 22, 4162–4166 (2010). (PMID: 2073081010.1002/adma.201000268)
Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 1–9 (2021). (PMID: 10.1038/s41467-021-23628-5)
Wang, Z. et al. High-quality semiconductor fibres via mechanical design. Nature 626, 72–78 (2024). (PMID: 382971731083040910.1038/s41586-023-06946-0)
Agcayazi, T., Chatterjee, K., Bozkurt, A. & Ghosh, T. K. Flexible interconnects for electronic textiles. Adv. Mater. Technol. 3, 1700277 (2018).
Stanley, J., Hunt, J. A., Kunovski, P. & Wei, Y. A review of connectors and joining technologies for electronic textiles. Eng. Rep. 4, e12491 (2022).
Marion, J. S. et al. Thermally drawn highly conductive fibers with controlled elasticity. Adv. Mater. 34, e2201081 (2022). (PMID: 3527824610.1002/adma.202201081)
Poincloux, S., Adda-Bedia, M. & Lechenault, F. Geometry and elasticity of a knitted fabric. Phys. Rev. X 8, 021075 (2018).
Chen, S. et al. Exploring the relationship between applied fabric strain and resultant local yarn strain within the elastic fabric based on finite element method. J. Mater. Sci. 55, 10258–10270 (2020). (PMID: 10.1007/s10853-020-04738-9)
Morton, W. E. & Hearle, J. W. S. Physical Properties of Textile Fibres (Woodhead Publishing, 2008). (PMID: 10.1533/9781845694425)
Iqbal, W., Jiang, Y., Qi, Y. & Xu, L. Yarn damage evaluation in the flat knitting process. AUTEX Res. J. 21, 272–283 (2021). (PMID: 10.2478/aut-2020-0014)
Boussu, F., Trifigny, N., Cochrane, C. & Koncar, V. in Smart Textiles and Their Applications 375–400 (Elsevier, 2016).
Brunnschweiler, D. The structure and tensile properties of braids. J. Text. Inst. Trans. 45, T55–T77 (1954). (PMID: 10.1080/19447025408662631)
Rawal, A., Saraswat, H. & Kumar, R. Tensile response of tubular braids with an elastic core. Composites, Part A: Appl. Sci. Manuf. 47, 150–155 (2013). (PMID: 10.1016/j.compositesa.2012.12.006)
Siitonen, S., Laakkonen, P., Vahimaa, P., Kuittinen, M. & Tossavainen, N. White LED light coupling into light guides with diffraction gratings. Appl. Opt. 45, 2623–2630 (2006). (PMID: 1663341110.1364/AO.45.002623)
Miller, J. M., de Beaucoudrey, N., Chavel, P., Turunen, J. & Cambril, E. Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection. Appl. Opt. 36, 5717–5727 (1997). (PMID: 1825939810.1364/AO.36.005717)
Cornacchia, M., Ozcan, K., Zheng, Y. & Velipasalar, S. A survey on activity detection and classification using wearable sensors. IEEE Sens. J. 17, 386–403 (2017). (PMID: 10.1109/JSEN.2016.2628346)
Loke, G. et al. Computing fabrics. Matter 2, 786–788 (2020). (PMID: 10.1016/j.matt.2020.03.007)
Guo, Y. et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces. ACS Nano 11, 6574–6585 (2017). (PMID: 2857081310.1021/acsnano.6b07550)
Loke, G., Yan, W., Khudiyev, T., Noel, G. & Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, e1904911 (2020). (PMID: 3165705310.1002/adma.201904911)
Branscomb, D., Beale, D. & Broughton, R. New directions in braiding. J. Eng. Fibers Fabr. 8, 11–24 (2013).
Lalitha, V. & Srinivasan, K. A review of Manchester, Miller, and FM0 encoding techniques. Smart Comput. Rev. 4, 481–490 (2014).
Yurtman, A. & Barshan, B. Activity recognition invariant to sensor orientation with wearable motion sensors. Sensors 17, 1838 (2017). (PMID: 28792481557984610.3390/s17081838)
Gupta, N., Cheung, H. & Payra, S. Fibre Computer Repository. Zenodo https://doi.org/10.5281/zenodo.13874664 (2025).
Entry Date(s):
Date Created: 20250226 Date Completed: 20250510 Latest Revision: 20250512
Update Code:
20250513
DOI:
10.1038/s41586-024-08568-6
PMID:
40011780
Database:
MEDLINE

Weitere Informationen

Despite advancements in wearable technologies <sup>1,2</sup> , barriers remain in achieving distributed computation located persistently on the human body. Here a textile fibre computer that monolithically combines analogue sensing, digital memory, processing and communication in a mass of less than 5 g is presented. Enabled by a foldable interposer, the two-dimensional pad architectures of microdevices were mapped to three-dimensional cylindrical layouts conforming to fibre geometry. Through connection with helical copper microwires, eight microdevices were thermally drawn into a machine-washable elastic fibre capable of more than 60% stretch. This programmable fibre, which incorporates a 32-bit floating-point microcontroller, independently performs edge computing tasks even when braided, woven, knitted or seam-sewn into garments. The universality of the assembly process allows for the integration of additional functions with simple modifications, including a rechargeable fibre power source that operates the computer for nearly 6 h. Finally, we surmount the perennial limitation of rigid interconnects by implementing two wireless communication schemes involving woven optical links and seam-inserted radio-frequency communications. To demonstrate its utility, we show that garments equipped with four fibre computers, one per limb, operating individually trained neural networks achieve, on average, 67% accuracy in classifying physical activity. However, when networked, inference accuracy increases to 95% using simple weighted voting.
(© 2025. The Author(s), under exclusive licence to Springer Nature Limited.)

Competing interests: The authors declare no competing interests.