Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: easySCF: a tool for enhancing interoperability between R and Python for efficient single-cell data analysis.

Title:
easySCF: a tool for enhancing interoperability between R and Python for efficient single-cell data analysis.
Authors:
Zhang H; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China., Zhang W; School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China., Zhao S; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China., Xu G; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China., Shen Y; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China., Jiang F; Shanghai Research and Development Center, UxBioInfo, Shanghai, 201100, China., Qin A; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China., Cui L; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China.; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
Source:
Bioinformatics (Oxford, England) [Bioinformatics] 2024 Nov 28; Vol. 40 (12).
Publication Type:
Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Oxford University Press Country of Publication: England NLM ID: 9808944 Publication Model: Print Cited Medium: Internet ISSN: 1367-4811 (Electronic) Linking ISSN: 13674803 NLM ISO Abbreviation: Bioinformatics Subsets: MEDLINE
Imprint Name(s):
Original Publication: Oxford : Oxford University Press, c1998-
References:
Nat Biotechnol. 2022 Feb;40(2):163-166. (PMID: 35132262)
Nature. 2018 Nov;563(7731):347-353. (PMID: 30429548)
Nat Biotechnol. 2020 Dec;38(12):1408-1414. (PMID: 32747759)
Nat Methods. 2017 Oct;14(10):979-982. (PMID: 28825705)
Nat Commun. 2021 Feb 17;12(1):1088. (PMID: 33597522)
Nature. 2022 Jul;607(7919):540-547. (PMID: 35794482)
Nat Biotechnol. 2018 Jun;36(5):411-420. (PMID: 29608179)
Nat Biotechnol. 2024 Feb;42(2):293-304. (PMID: 37231261)
Nat Biotechnol. 2014 Apr;32(4):381-386. (PMID: 24658644)
Nat Commun. 2020 Dec 10;11(1):6322. (PMID: 33303760)
Nucleic Acids Res. 2024 Nov 28;:. (PMID: 39607691)
Nat Protoc. 2020 Apr;15(4):1484-1506. (PMID: 32103204)
Nat Biotechnol. 2023 May;41(5):604-606. (PMID: 37037904)
Nat Biotechnol. 2015 May;33(5):495-502. (PMID: 25867923)
Nat Protoc. 2024 Sep 16;:. (PMID: 39289562)
Genome Biol. 2018 Feb 6;19(1):15. (PMID: 29409532)
Nat Methods. 2017 Mar;14(3):309-315. (PMID: 28114287)
NAR Genom Bioinform. 2020 Sep;2(3):lqaa052. (PMID: 32766548)
Cell. 2021 Jun 24;184(13):3573-3587.e29. (PMID: 34062119)
BMC Bioinformatics. 2022 Jan 6;23(1):16. (PMID: 34991457)
Bioinformatics. 2024 Feb 1;40(2):. (PMID: 38290765)
Nat Genet. 2021 Dec;53(12):1698-1711. (PMID: 34857954)
Nature. 2019 Feb;566(7745):496-502. (PMID: 30787437)
Cell. 2019 Jun 13;177(7):1888-1902.e21. (PMID: 31178118)
Grant Information:
82372430 National Natural Science Foundation of China
Entry Date(s):
Date Created: 20241125 Date Completed: 20241211 Latest Revision: 20250219
Update Code:
20250220
PubMed Central ID:
PMC11634540
DOI:
10.1093/bioinformatics/btae710
PMID:
39585309
Database:
MEDLINE

Weitere Informationen

Summary: This study introduces easySCF, a tool designed to enhance the interoperability of single-cell data between the two major bioinformatics platforms, R and Python. By supporting seamless data exchange, easySCF improves the efficiency and accuracy of single-cell data analysis.
Availability and Implementation: easySCF utilizes a unified data format (.h5 format) to facilitate data transfer between R and Python platforms. The tool has been evaluated for data processing speed, memory efficiency, and disk usage, as well as its capability to handle large-scale single-cell datasets. easySCF is available as an open-source package, with implementation details and documentation accessible at https://github.com/xleizi/easySCF.
(© The Author(s) 2024. Published by Oxford University Press.)