Treffer: A deep drug prediction framework for viral infectious diseases using an optimizer-based ensemble of convolutional neural network: COVID-19 as a case study.

Title:
A deep drug prediction framework for viral infectious diseases using an optimizer-based ensemble of convolutional neural network: COVID-19 as a case study.
Authors:
Aruna AS; Dept. of Information Technology, Government Engineering College Palakkad, APJ Abdul Kalam Technological University, Palakkad, Kerala, 678633, India. aruna.arathi@gmail.com.; Department of Computer Science, College of Engineering Vadakara, Kozhikode, Kerala, 673105, India. aruna.arathi@gmail.com., Babu KRR; Dept. of Information Technology, Government Engineering College Palakkad, APJ Abdul Kalam Technological University, Palakkad, Kerala, 678633, India., Deepthi K; Department of Computer Science, Central University of Kerala (Govt. of India), Kasaragod, Kerala, 671320, India.
Source:
Molecular diversity [Mol Divers] 2025 Jun; Vol. 29 (3), pp. 2473-2487. Date of Electronic Publication: 2024 Oct 09.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: ESCOM Science Publishers Country of Publication: Netherlands NLM ID: 9516534 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-501X (Electronic) Linking ISSN: 13811991 NLM ISO Abbreviation: Mol Divers Subsets: MEDLINE
Imprint Name(s):
Original Publication: Leiden, The Netherlands : ESCOM Science Publishers, c1995-
References:
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020) COVID-19 infection: emergence, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98. https://doi.org/10.1016/j.jare.2020.03.005. (PMID: 10.1016/j.jare.2020.03.005322574317113610)
Pillaiyar T, Meenakshisundaram S, Manickam M (2020) Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 25(4):668–688. https://doi.org/10.1016/j.jare.2020.03.005. (PMID: 10.1016/j.jare.2020.03.005320064687102522)
Rabaan AA, Al-Ahmed SH, Haque S et al (2020) SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med 28(2):17CCC4-184.
Ojha PK, Kar S, Krishna JG, Roy K, Leszczynski J (2021) Therapeutics for COVID-19: from computation to practices—where we are, where we are heading to. Mol Divers 25:625–659. https://doi.org/10.1007/s11030-020-10134-x. (PMID: 10.1007/s11030-020-10134-x32880078)
Chen G, He H, Zhao L, Lv Q, Chen CY (2024) GINCM-DTA: a graph isomorphic network with protein contact map representation for potential use against Covid-19 and omicron subvariants. Expert Syst Appl 236:121274. https://doi.org/10.1016/j.eswa.2023.121274. (PMID: 10.1016/j.eswa.2023.121274)
Ianevski A, Kushnir A, Nader K, Miihkinen M, Xhaard H, Aittokallio T, Tanoli Z (2024) RepurposeDrugs: an interactive web-portal and predictive platform for repurposing mono-and combination therapies. Brief Bioinform. https://doi.org/10.1093/bib/bbae328. (PMID: 10.1093/bib/bbae3283898037011232279)
He H, Chen G, Chen CY (2023) NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction. Bioinformatics 39(6):btad355. https://doi.org/10.1093/bioinformatics/btad355. (PMID: 10.1093/bioinformatics/btad3553725283510287904)
Hooshmand SA, Zarei Ghobadi M, Hooshmand SE, Azimzadeh Jamalkandi S, Alavi SM, Masoudi-Nejad A (2021) A multimodal deep learning-based drug repurposing approach for treatment of COVID-19. Mol Divers 25:1717–1730. https://doi.org/10.1007/s11030-020-10144-9. (PMID: 10.1007/s11030-020-10144-932997257)
Aruna AS, Remesh Babu KR, Deepthi K (2022) A survey of recent techniques in computational drug repurposing. In: International conference on intelligent systems design and applications, Cham: Springer, pp. 565–575.
Ren ZH, You ZH, Zou Q et al (2023) DeepMPF: deep learning framework for predicting drug-target interactions based on multi-modal representation with meta-path semantic analysis. J Transl Med 21(1):48. https://doi.org/10.1186/s12967-023-03876-3. (PMID: 10.1186/s12967-023-03876-3366982089876420)
Akbar S, Zou Q, Raza A, Alarfaj FK (2024) iAFPs-Mv-BiTCN: predicting antifungal peptides using self-attention transformer embedding and transform evolutionary based multi-view features with bidirectional temporal convolutional networks. Artif Intell Med 151:102860. https://doi.org/10.1016/j.artmed.2024.102860. (PMID: 10.1016/j.artmed.2024.10286038552379)
Pushpakom S, Iorio F, Eyers PA et al (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18(1):41–58. https://doi.org/10.1038/nrd.2018.168. (PMID: 10.1038/nrd.2018.16830310233)
Meng Y, Jin M, Tang X, Xu J (2021) Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study. Appl Soft Comput 103:107135. https://doi.org/10.1016/j.asoc.2021.107135. (PMID: 10.1016/j.asoc.2021.107135335193227825831)
Peng L, Shen L, Xu J et al (2021) Prioritizing antiviral drugs against SARS-CoV-2 by integrating viral complete genome sequences and drug chemical structures. Sci Rep 11(1):6248. https://doi.org/10.1038/s41598-021-83737-5. (PMID: 10.1038/s41598-021-83737-5337375237973547)
Mongia A, Saha SK, Chouzenoux E, Majumdar A (2021) A computational approach to aid clinicians in selecting antiviral drugs for COVID-19 trials. Sci Rep 11(1):9047. https://doi.org/10.1038/s41598-021-88153-3. (PMID: 10.1038/s41598-021-88153-3339072098079380)
Shen L, Liu F, Huang L, Liu G, Zhou L, Peng L (2022) VDA-RWLRLS: an anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares. Comput Biol Med 140:105119. https://doi.org/10.1016/j.compbiomed.2021.105119. (PMID: 10.1016/j.compbiomed.2021.10511934902608)
Li Y, Xu X, Tsoka S (2022) A matrix factorization-based drug-virus link prediction method for SARS-CoV-2 drug prioritization. In: International conference on machine learning, optimization, and data science, Cham: Springer, pp. 35–47.
Xu J, Meng Y, Peng L et al (2022) Computational drug repositioning using similarity constrained weight regularization matrix factorization: a case of COVID-19. J Cell Mol Med 26(13):3772–3782. https://doi.org/10.1111/jcmm.17412. (PMID: 10.1111/jcmm.17412356449929258716)
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F (2020) Network-based drug repurposing for novel coronavirus 209- nCoV/SARS-CoV-2. Cell Discov 6(1):14. https://doi.org/10.1038/s41421-020-0153-3. (PMID: 10.1038/s41421-020-0153-3321949807073332)
Tang X, Cai L, Meng Y, Xu J, Lu C, Yang J (2021) Indicator regularized non-negative matrix factorization method-based drug repurposing for COVID-19. Front Immunol 11:603615. https://doi.org/10.3389/fimmu.2020.603615. (PMID: 10.3389/fimmu.2020.603615335846727878370)
Aruna AS, Remesh Babu KR, Deepthi K (2023) An ensemble approach for prioritizing antivirals against COVID-19 via heterogeneous network inference-based inductive matrix completion. J Comput Biophys Chem. https://doi.org/10.1142/S2737416523410041. (PMID: 10.1142/S2737416523410041)
Qu J, Song Z, Cheng X, Jiang Z, Zhou J (2023) A new integrated framework for the identification of potential virus–drug associations. Front Microbiol 14:1179414. https://doi.org/10.3389/fmicb.2023.1179414. (PMID: 10.3389/fmicb.2023.11794143767543210478006)
Ma Y, Zhong J, Zhu N (2023) Weighted hypergraph learning and adaptive inductive matrix completion for SARS-CoV-2 drug repositioning. Methods 219:102–110. https://doi.org/10.1016/j.ymeth.2023.10.002. (PMID: 10.1016/j.ymeth.2023.10.00237804962)
Lalmuanawma S, Hussain J, Chhakchhuak L (2020) Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos Solitons Fractals 139:110059. https://doi.org/10.1016/j.chaos.2020.110059. (PMID: 10.1016/j.chaos.2020.110059328346127315944)
Deepthi K, Jereesh AS, Liu Y (2021) A deep learning ensemble approach to prioritize antiviral drugs against novel coronavirus SARS-CoV-2 for COVID-19 drug repurposing. Appl Soft Comput 113:107945. https://doi.org/10.1016/j.asoc.2021.107945. (PMID: 10.1016/j.asoc.2021.107945)
Hashemi SM, Zabihian A, Hooshmand M, Gharaghani S (2023) DRaW: prediction of COVID-19 antivirals by deep learning—an objection on using matrix factorization. BMC Bioinform 24(1):52. https://doi.org/10.1186/s12859-023-05181-8. (PMID: 10.1186/s12859-023-05181-8)
Su X, You Z, Wang L, Hu L, Wong L, Ji B, Zhao B (2021) SANE: a sequence combined attentive network embedding model for COVID-19 drug repositioning. Appl Soft Comput 111:107831. https://doi.org/10.1016/j.asoc.2021.107831. (PMID: 10.1016/j.asoc.2021.107831344566568381638)
Huang Z, Zhang P, Deng L (2023) DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response. Bioinformatics 39:i475–i483. https://doi.org/10.1093/bioinformatics/btad244. (PMID: 10.1093/bioinformatics/btad2443738716810311311)
Hsieh K, Wang Y, Chen L et al (2021) Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence. Sci Rep 11(1):23179. https://doi.org/10.1038/s41598-021-02353-5. (PMID: 10.1038/s41598-021-02353-5348487618632883)
Che M, Yao K, Che C, Cao Z, Kong F (2021) Knowledge-graph-based drug repositioning against COVID-19 by graph convolutional network with attention mechanism. Future Internet 13(1):13. https://doi.org/10.3390/fi13010013. (PMID: 10.3390/fi13010013)
Aruna AS, Babu KR, Deepthi K (2023) A drug-virus prediction model based on an ensemble classifier with feature optimization: a case study with COVID-19. In: International conference on communication and intelligent systems, Singapore: Springer, pp. 267–280.
Das B, Kutsal M, Das R (2022) A geometric deep learning model for display and prediction of potential drug-virus interactions against SARS-CoV-2. Chemometr Intell Lab Syst 229:104640. https://doi.org/10.1016/j.chemolab.2022.104640. (PMID: 10.1016/j.chemolab.2022.104640360428449400382)
Zhang P, Hu X, Li G, Deng L (2023) AntiViralDL: computational antiviral drug repurposing using graph neural network and self-supervised learning. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2023.3328337. (PMID: 10.1109/JBHI.2023.33283373809082310481620)
Zhao J, Kuang L, Hu A, Zhang Q, Yang D, Wang C (2024) OGNNMDA: a computational model for microbe-drug association prediction based on ordered message-passing graph neural networks. Front Genet 15:1370013. https://doi.org/10.3389/fgene.2024.1370013. (PMID: 10.3389/fgene.2024.13700133868965411058190)
Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: shedding new light on drug mefigolism. Nucleic Acids Res 42(D1):D1091–D1097. https://doi.org/10.1093/nar/gkt1068. (PMID: 10.1093/nar/gkt106824203711)
Öztürk H, Ozkirimli E, Özgür A (2016) A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction. BMC Bioinform 17(1):1–11. https://doi.org/10.1186/s12859-016-0977-x. (PMID: 10.1186/s12859-016-0977-x)
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3(1):1–14. https://doi.org/10.1186/1758-2946-3-33. (PMID: 10.1186/1758-2946-3-33)
Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform 7(1):1–13. https://doi.org/10.1186/s13321-015-0069-3. (PMID: 10.1186/s13321-015-0069-3)
Wheeler DL, Chappey C, Lash AE et al (2000) Database resources of the national center for biotechnology information. Nucleic Acids Res 28(1):10–14. https://doi.org/10.1093/nar/28.1.10. (PMID: 10.1093/nar/28.1.1010592169102437)
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010. (PMID: 10.1093/molbev/mst010233296903603318)
Chen X, Wang L, Qu J, Guan NN, Li JQ (2018) Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics 34(24):4256–4265. https://doi.org/10.1093/bioinformatics/bty503. (PMID: 10.1093/bioinformatics/bty50329939227)
Rukh G, Akbar S, Rehman G, Alarfaj FK, Zou Q (2024) StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning. BMC Bioinform 25(1):256. https://doi.org/10.1186/s12859-024-05884-6. (PMID: 10.1186/s12859-024-05884-6)
Akbar S, Raza A, Zou Q (2024) Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model. BMC Bioinform 25(1):102. https://doi.org/10.1186/s12859-024-05726-5. (PMID: 10.1186/s12859-024-05726-5)
Ullah M, Akbar S, Raza A, Zou Q (2024) DeepAVP-TPPred: identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm. Bioinformatics 40(5):btae305. https://doi.org/10.1093/bioinformatics/btae305. (PMID: 10.1093/bioinformatics/btae3053871048211256913)
Raza A, Uddin J, Almuhaimeed A, Akbar S, Zou Q, Ahmad A (2023) AIPs-SnTCN: predicting anti-inflammatory peptides using fastText and transformer encoder-based hybrid word embedding with self-normalized temporal convolutional networks. J Chem Inf Model 63(21):6537–6554. https://doi.org/10.1021/acs.jcim.3c01563. (PMID: 10.1021/acs.jcim.3c0156337905969)
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551. https://doi.org/10.1162/neco.1989.1.4.541. (PMID: 10.1162/neco.1989.1.4.541)
Wang L, You ZH, Huang YA, Huang DS, Chan KC (2020) An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network. Bioinformatics 36(13):4038–4046. https://doi.org/10.1093/bioinformatics/btz825. (PMID: 10.1093/bioinformatics/btz82531793982)
Deepthi K, Jereesh AS (2021) An ensemble approach based on multi-source information to predict drug-MiRNA associations via convolutional neural networks. IEEE Access 9:38331–38341. https://doi.org/10.1109/ACCESS.2021.3063885. (PMID: 10.1109/ACCESS.2021.3063885)
Peng J, Hui W, Li Q et al (2019) A learning-based framework for miRNA-disease association identification using neural networks. Bioinformatics 35(21):4364–4371. https://doi.org/10.1093/bioinformatics/btz254. (PMID: 10.1093/bioinformatics/btz25430977780)
Ciocca G, Napoletano P, Schettini R (2018) CNN-based features for retrieval and classification of food images. Comput Vis Image Underst 176:70–77. https://doi.org/10.1016/j.cviu.2018.09.001. (PMID: 10.1016/j.cviu.2018.09.001)
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958.
Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814.
Mirjalili S (2019) Evolutionary algorithms and neural networks. Stud Comput Intell 780:43–55. (PMID: 10.1007/978-3-319-93025-1_4)
Ahmad F, Mat Isa NA, Hussain Z, Osman MK, Sulaiman SN (2015) A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Anal Appl 18:861–870. https://doi.org/10.1007/s10044-014-0375-9. (PMID: 10.1007/s10044-014-0375-9)
Yerukala Sathipati S, Ho SY (2018) Identifying a miRNA signature for predicting the stage of breast cancer. Sci Rep 8(1):16138. https://doi.org/10.1038/s41598-018-34604-3. (PMID: 10.1038/s41598-018-34604-3303821596208346)
Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80:8091–8126. https://doi.org/10.1007/s11042-020-10139-6. (PMID: 10.1007/s11042-020-10139-633162782)
Greenhalgh D, Marshall S (2000) Convergence criteria for genetic algorithms. SIAM J Comput 30(1):269–282. (PMID: 10.1137/S009753979732565X)
Zhou ZH, Feng J (2019) Deep forest. National Sci Rev 6(1):74–86. https://doi.org/10.1137/S009753979732565X. (PMID: 10.1137/S009753979732565X)
Liu W, Lin H, Huang L, Peng L, Tang T, Zhao Q, Yang L (2022) Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder. Brief Bioinform 23(3):bbac104. https://doi.org/10.1093/bib/bbac104. (PMID: 10.1093/bib/bbac10435325038)
Tian X, Shen L, Wang Z, Zhou L, Peng L (2021) A novel lncRNA–protein interaction prediction method based on deep forest with cascade forest structure. Sci Rep 11(1):18881. https://doi.org/10.1038/s41598-021-98277-1. (PMID: 10.1038/s41598-021-98277-1345567588460650)
Zeng X, Zhong Y, Lin W, Zou Q (2020) Predicting disease-associated circular RNAs using deep forests combined with positive-unlabeled learning methods. Brief Bioinform 21(4):1425–1436. https://doi.org/10.1093/bib/bbz080. (PMID: 10.1093/bib/bbz08031612203)
Zhou ZH (2012) Ensemble methods: foundations and algorithms. CRC Press, p Boca Raton. (PMID: 10.1201/b12207)
Boyd K, Eng KH, Page CD (2013) Area under the precision-recall curve: point estimates and confidence intervals. In: Machine learning and knowledge discovery in databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23–27, 2013, Proceedings, Springer: Berlin Heidelberg, Part III 13, pp. 451–466.
Mandrekar JN (2010) Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 5(9):1315–1316. https://doi.org/10.1097/JTO.0b013e3181ec173d. (PMID: 10.1097/JTO.0b013e3181ec173d20736804)
Dong L, Hu S, Gao J (2020) Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 14(1):58–60. https://doi.org/10.5582/ddt.2020.01012. (PMID: 10.5582/ddt.2020.0101232147628)
He H, He B, Guan L et al (2024) De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model. Nat Commun 15(1):6867. https://doi.org/10.1038/s41467-024-50903-y. (PMID: 10.1038/s41467-024-50903-y3912775311316817)
Khalili JS, Zhu H, Mak NS, Yan Y, Zhu Y (2020) Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID-19. J Med Virol 92(7):740–746. https://doi.org/10.1002/jmv.25798. (PMID: 10.1002/jmv.25798322274937228408)
Beigel JH, Tomashek KM, Dodd LE et al (2020) Remdesivir for the treatment of Covid-19. N Engl J Med 383(19):1813–1826. (PMID: 10.1056/NEJMoa200776432445440)
Udwadia ZF, Singh P, Barkate H et al (2021) Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: a randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis 103:62–71. https://doi.org/10.1016/j.ijid.2020.11.142. (PMID: 10.1016/j.ijid.2020.11.14233212256)
Bosaeed M, Alharbi A, Mahmoud E et al (2022) Efficacy of favipiravir in adults with mild COVID-19: a randomized, double-blind, multicentre, placebo-controlled clinical trial. Clin Microbiol Infect 28(4):602–608. https://doi.org/10.1016/j.cmi.2021.12.026. (PMID: 10.1016/j.cmi.2021.12.026350263758747778)
Rossignol JF (2014) Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antivir Res 110:94–103. https://doi.org/10.1016/j.antiviral.2014.07.014. (PMID: 10.1016/j.antiviral.2014.07.01425108173)
Mehra MR, Ruschitzka F, Patel AN (2020) Retraction-hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. The lancet 395(10240):1820. https://doi.org/10.1016/S0140-6736(20)31180-6. (PMID: 10.1016/S0140-6736(20)31180-6)
Romani D, Noureddine O, Issaoui N, Brandán SA (2020) Properties and reactivities of niclosamide in different media, a potential antiviral to treatment of COVID-19 by using DFT calculations and molecular docking. Biointerface Res Appl Chem 10(6):7295–7328. https://doi.org/10.33263/BRIAC106.72957328. (PMID: 10.33263/BRIAC106.72957328)
Pereira M, Vale N (2022) Saquinavir: from HIV to COVID-19 and cancer treatment. Biomolecules 12(7):944. https://doi.org/10.3390/biom12070944. (PMID: 10.3390/biom12070944358834999313067)
Jayk Bernal A, Gomes da Silva MM, Musungaie DB et al (2022) Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. New Engl J Med 386(6):509–520. https://doi.org/10.1056/nejmoa2116044. (PMID: 10.1056/nejmoa211604434914868)
Araújo R, Aranda-Martínez JD, Aranda-Abreu GE (2020) Amantadine treatment for people with COVID-19. Arch Med Res 51(7):739. https://doi.org/10.1016/j.arcmed.2020.06.009. (PMID: 10.1016/j.arcmed.2020.06.009325716067290190)
Jakovac H (2020) COVID-19 and hypertension: is the HSP60 culprit for the severe course and worse outcome? Am J Physiol Heart Circ Physiol 319(4):H793–H796. https://doi.org/10.1152/ajpheart.00506.2020. (PMID: 10.1152/ajpheart.00506.2020328860027516379)
Babalghith AO, Al-Kuraishy HM, Al-Gareeb AI (2022) The role of berberine in Covid-19: potential adjunct therapy. Inflammopharmacology 30(6):2003–2016. https://doi.org/10.1007/s10787-022-01080-1. (PMID: 10.1007/s10787-022-01080-1361832849526677)
Saxena S, Shukla S, Gyanchandani M (2020) Pre-trained convolutional neural networks as feature extractors for diagnosis of breast cancer using histopathology. Int J Imaging Syst Technol 30(3):577–591. https://doi.org/10.1002/ima.22399. (PMID: 10.1002/ima.22399)
Pasupa K, Sunhem W (2016) A comparison between shallow and deep architecture classifiers on small dataset. In: 2016 8th International conference on information technology and electrical engineering, IEEE, pp. 1–6.
Deepthi K, Jereesh AS (2021) Inferring potential CircRNA-disease associations via deep autoencoder-based classification. Mol Diagn Ther 25:87–97. https://doi.org/10.1007/s40291-020-00499-y. (PMID: 10.1007/s40291-020-00499-y33156515)
Contributed Indexing:
Keywords: COVID-19; Convolutional neural network; Deep forest; Drug repurposing; Genetic algorithm
Substance Nomenclature:
0 (Antiviral Agents)
Entry Date(s):
Date Created: 20241008 Date Completed: 20250515 Latest Revision: 20250527
Update Code:
20250527
DOI:
10.1007/s11030-024-11003-7
PMID:
39379663
Database:
MEDLINE

Weitere Informationen

The SARS-CoV-2 outbreak highlights the persistent vulnerability of humanity to epidemics and emerging microbial threats, emphasizing the lack of time to develop disease-specific treatments. Therefore, it appears beneficial to utilize existing resources and therapies. Computational drug repositioning is an effective strategy that redirects authorized drugs to new therapeutic purposes. This strategy holds significant promise for newly emerging diseases, as drug discovery is a lengthy and expensive process. Through this study, we present an ensemble method based on the convolutional neural network integrated with genetic algorithm and deep forest classifier for virus-drug association prediction (CGDVDA). We generated feature vectors by combining drug chemical structure and virus genomic sequence-based similarities, and extracted prominent deep features by applying the convolutional neural network. The convoluted features are optimized using the genetic algorithm and classified using the ensemble deep forest classifier to predict novel virus-drug associations. The proposed method predicts drugs for COVID-19 and other viral diseases in the dataset. The model could achieve ROC-AUC scores of 0.9159 on fivefold cross-validation. We compared the performance of the model with state-of-the-art approaches and classifiers. The experimental results and case studies illustrate the efficacy of CGDVDA in predicting drugs against viral infectious diseases.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Declarations. Conflict of interest: The authors declare that they have no conflict of interest. Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent: Informed consent has been derived from all the participants.