Treffer: Improving the Annotation Process in Computational Pathology: A Pilot Study with Manual and Semi-automated Approaches on Consumer and Medical Grade Devices.
Med Image Anal. 2023 Oct;89:102918. (PMID: 37595404)
J Pathol Clin Res. 2022 May;8(3):209-216. (PMID: 35174655)
Mod Pathol. 2022 Feb;35(2):152-164. (PMID: 34599281)
Pathology. 2023 Dec;55(7):1017-1020. (PMID: 37813761)
Nurse Educ Today. 2009 Apr;29(3):284-91. (PMID: 19084297)
Biomed Eng Online. 2022 May 25;21(1):33. (PMID: 35614504)
Comput Methods Programs Biomed. 2022 Jun;220:106828. (PMID: 35500506)
J Clin Pathol. 2024 Nov 21;:. (PMID: 38538076)
Mod Pathol. 2023 Nov;36(11):100297. (PMID: 37544362)
J Nephrol. 2024 Jan;37(1):221-229. (PMID: 36786977)
J Med Imaging (Bellingham). 2020 Mar;7(2):027501. (PMID: 32341938)
Proc IAPR Int Conf Pattern Recogn. 2021 Jan;2020:8727-8734. (PMID: 36745147)
J Nephrol. 2024 Jan;37(1):65-76. (PMID: 37768550)
J Nephrol. 2022 Sep;35(7):1801-1808. (PMID: 35441256)
Pathologica. 2023 Jun;115(3):127-136. (PMID: 37387439)
Med Image Anal. 2021 Jan;67:101859. (PMID: 33129150)
Lancet Oncol. 2019 May;20(5):e253-e261. (PMID: 31044723)
Diagnostics (Basel). 2022 Sep 26;12(10):. (PMID: 36292013)
J Nephrol. 2021 Jun;34(3):681-688. (PMID: 32683656)
Nat Biomed Eng. 2022 Dec;6(12):1420-1434. (PMID: 36217022)
Nat Med. 2019 Aug;25(8):1301-1309. (PMID: 31308507)
Front Med (Lausanne). 2019 Nov 14;6:255. (PMID: 31799253)
Gastric Cancer. 2023 Mar;26(2):264-274. (PMID: 36264524)
Semin Diagn Pathol. 2023 Mar;40(2):100-108. (PMID: 36882343)
Front Med. 2020 Aug;14(4):470-487. (PMID: 32728875)
Mod Pathol. 2023 Apr;36(4):100086. (PMID: 36788085)
J Pathol Inform. 2015 Feb 24;6:7. (PMID: 25774318)
J Pathol Clin Res. 2022 Mar;8(2):116-128. (PMID: 35014198)
Sci Rep. 2017 Dec 4;7(1):16878. (PMID: 29203879)
J Pathol Inform. 2020 Aug 11;11:23. (PMID: 33042602)
Comput Methods Programs Biomed. 2023 Dec;242:107814. (PMID: 37722311)
AMIA Annu Symp Proc. 2005;:460-4. (PMID: 16779082)
Comput Med Imaging Graph. 2023 Jan;103:102155. (PMID: 36525770)
Crit Rev Oncog. 2023;28(3):1-6. (PMID: 37968987)
Am J Pathol. 2024 Oct;194(10):1898-1912. (PMID: 39032601)
J Pathol Clin Res. 2021 Nov;7(6):542-547. (PMID: 34288586)
Rev Esp Patol. 2022 Jan-Mar;55(1):19-25. (PMID: 34980436)
Nat Commun. 2023 Mar 22;14(1):1572. (PMID: 36949078)
Diagnostics (Basel). 2022 Nov 15;12(11):. (PMID: 36428854)
Crit Rev Oncol Hematol. 2022 Oct;178:103776. (PMID: 35934262)
Weitere Informationen
The development of reliable artificial intelligence (AI) algorithms in pathology often depends on ground truth provided by annotation of whole slide images (WSI), a time-consuming and operator-dependent process. A comparative analysis of different annotation approaches is performed to streamline this process. Two pathologists annotated renal tissue using semi-automated (Segment Anything Model, SAM)) and manual devices (touchpad vs mouse). A comparison was conducted in terms of working time, reproducibility (overlap fraction), and precision (0 to 10 accuracy rated by two expert nephropathologists) among different methods and operators. The impact of different displays on mouse performance was evaluated. Annotations focused on three tissue compartments: tubules (57 annotations), glomeruli (53 annotations), and arteries (58 annotations). The semi-automatic approach was the fastest and had the least inter-observer variability, averaging 13.6 ± 0.2 min with a difference (Δ) of 2%, followed by the mouse (29.9 ± 10.2, Δ = 24%), and the touchpad (47.5 ± 19.6 min, Δ = 45%). The highest reproducibility in tubules and glomeruli was achieved with SAM (overlap values of 1 and 0.99 compared to 0.97 for the mouse and 0.94 and 0.93 for the touchpad), though SAM had lower reproducibility in arteries (overlap value of 0.89 compared to 0.94 for both the mouse and touchpad). No precision differences were observed between operators (p = 0.59). Using non-medical monitors increased annotation times by 6.1%. The future employment of semi-automated and AI-assisted approaches can significantly speed up the annotation process, improving the ground truth for AI tool development.
(© 2024. The Author(s).)
Declarations. Ethical Approval: Approval was obtained from the local ethics committee (PNRR-MR1-2022–12375735, 03/16/23). Conflict of Interest: The authors declare no competing interests.