Treffer: Stitching method for panoramic nail fold images based on capillary contour enhancement.
A. Karbalaie, F. Abtahi, A. Fatemi, M. Etehadtavakol, Z. Emrani, B.‐E. Erlandsson, Microvasc. Res. 2017, 113, 1.
T. Sugimoto, S. Mokuda, K. Yamaguchi, K. Araki, H. Kohno, Y. Yoshida, S. Hirata, N. Hattori, E. Sugiyama, Mod. Rheumatol. Case Rep. 2020, 5, 95.
N. P. Doshi, G. Schaefer, A. Merla, Enhancement of Nail fold Capillaroscopy ImagesProceedings of the IEEE‐EMBS International Conference on Biomedical and Health Informatics (BHI 2012), IEEE, New York 2012, p. 452.2–7.
S. F. Mat Radzi, M. K. Abdul Karim, M. I. Saripan, M. A. Abd Rahman, N. H. Osman, E. Z. Dalah, N. Mohd Noor, IEEE Access 2020, 8, 127720.
M. Liu, J. Chen, X. Han, Electronics 2022, 11, 3695.
L. T. V. K. Asari, J. Electron. Imag. 2005, 14, 043006.
D. G. Lowe, Int. J. Comput. Vis. 2004, 60, 91.
T. T. H. Bay, L. Van Gool, Computer Vision–ECCV 2006, 3951, 404.
J. Zhu, M. Ren, Comput. Math. Methods Med. 2014, 2014, 1.
M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, P. Fua, BRIEF: computing a local binary descriptor very fast, IEEE Transactions on Pattern Analysis and Machine Intelligence (2012) 1281–1298.
Y. Biadgie, K.‐A. Sohn, IETE technical review 2016, 33, 492.
V.L. Michael Calonder, Christoph Strecha, Pascal Fua, BRIEF: Binary robust independent elementary features, Computer Vision–ECCV 2010, Berlin Heidelberg, 2010, 778–792.
V. R. Ethan Rublee, K. Konolige, G. Bradski, 2011 IEEE International Conference on Computer VisionBarcelona, IEEE, Spain 2011, p. 2564.
W. Beiyi, Z. Xiaohong, W. Weibing, Integr. Ferroelectr. 2021, 218, 147.
R. C. B. Martin, A. Fischler, Readings in Computer Vision, Elsevier, Amsterdam, The Netherlands 1987, p. 726.
X. R. She Jianguo, C. Ning, J. Jiangsu Univ. Sci. Technol., Nat. Sci. Ed. 2015, 29, 164.
M. U. A. E. R. Skeliski, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, IEEE, Kauai, HI, USA 2001, p. 509.
J. Davis, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231), IEEE, Santa Barbara, CA, USA 1998, p. 354.
S. Liu, Y. Li, J. Zhou, J. Hu, N. Chen, Y. Shang, Z. Chen, T. Li, Microvasc. Res. 2020, 130, 104011.
Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, IEEE Trans. Image Process. 2004, 13, 600.
A. K. Moorthy, A. C. Bovik, IEEE Trans. Image Process. 2011, 20, 3350.
E. P. A. Stephen, M. Pizer, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar, J. B. Romeny, K. Z. Zimmerman, Computer Vision, Graphics, and Image Processing, Vol. 39, Elsevier, Amsterdam, The Netherlands 1987, p. 355.
H. Yin, Z. Wu, A. Huang, J. Luo, J. Liang, J. Lin, Q. Ye, M. Xie, C. Ye, X. Li, Y. Wu, Microvasc. Res. 2023, 150, 104593.
Weitere Informationen
Nail fold capillaroscopy is an important means of monitoring human health. Panoramic nail fold images improve the efficiency and accuracy of examinations. However, the acquisition of panoramic nail fold images is seldom studied and the problem manifests of few matching feature points when image stitching is used for such images. Therefore, this paper presents a method for panoramic nail fold image stitching based on vascular contour enhancement, which first solves the problem of few matching feature points by pre-processing the image with contrast-constrained adaptive histogram equalization (CLAHE), bilateral filtering (BF), and sharpening algorithms. The panoramic images of the nail fold blood vessels are then successfully stitched using the fast robust feature (SURF), fast library of approximate nearest neighbors (FLANN) and random sample agreement (RANSAC) algorithms. The experimental results show that the panoramic image stitched by this paper's algorithm has a field of view width of 7.43 mm, which improves the efficiency and accuracy of diagnosis.
(© 2024 Wiley‐VCH GmbH.)