Treffer: A tutorial on fitting joint models of M/EEG and behavior to understand cognition.
Original Publication: Austin, Tex. : Psychonomic Society, c2005-
Au, J., Katz, B., Moon, A., Talati, S., Abagis, T. R., Jonides, J., & Jaeggi, S. M. (2021). Post-training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance. Journal of Neuroscience Research, 99(10), 2351–2363. (PMID: 334382978273206)
Bamber, D., & van Santen, J. P. H. (2000). How to assess a model’s testability and identifiability. Journal of Mathematical Psychology, 44(1), 20–40. (PMID: 10733856)
Baribault, B. & Collins, A. G. E. (2023). Troubleshooting Bayesian cognitive models. Psychological Methods.
Blohm, G., Kording, K. P., & Schrater, P. R. (2020). A how-to-model guide for neuroscience. eNeuro, 7(1).
Bode, S., Sewell, D. K., Lilburn, S., Forte, J. D., Smith, P. L., & Stahl, J. (2012). Predicting perceptual decision biases from early brain activity. Journal of Neuroscience, 32(36), 12488–12498. (PMID: 22956839)
Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., ... Palmeri, T. J., et al. (2018). Estimating across-trial variability parameters of the diffusion decision model: Expert advice and recommendations. Journal of Mathematical Psychology, 87, 46–75.
Boehm, U., van Maanen, L., Forstmann, B., & van Rijn, H. (2014). Trial-by-trial fluctuations in CNV amplitude reflect anticipatory adjustment of response caution. NeuroImage, 96, 95–105. (PMID: 24699015)
Borst, J. P., & Anderson, J. R. (2015). The discovery of processing stages: Analyzing EEG data with hidden semi-Markov models. NeuroImage, 108, 60–73. (PMID: 25534112)
Boudewyn, M. A., Erickson, M. A., Winsler, K., Ragland, J. D., Yonelinas, A., Frank, M., ... Carter, C. S. (2023). Managing EEG studies: How to prepare and what to do once data collection has begun. Psychophysiology (pp. e14365).
Bridwell, D. A., Cavanagh, J. F., Collins, A. G. E., Nunez, M. D., Srinivasan, R., Stober, S., & Calhoun, V. D. (2018). Moving beyond ERP components: A selective review of approaches to integrate EEG and behavior. Frontiers in Human Neuroscience, 12, 106. (PMID: 296324805879117)
Brown, S. D., Ratcliff, R., & Smith, P. L. (2006). Evaluating methods for approximating stochastic differential equations. Journal of Mathematical Psychology, 50(4), 402–410. (PMID: 185745212435510)
Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using stan. Journal of Statistical Software, 80, 1–28.
Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M. (2019). Cognitive and neural bases of multi-attribute, multi-alternative, value-based decisions. Trends in Cognitive Sciences, 23(3), 251–263. (PMID: 30630672)
Busemeyer, J. R., & Wang, Y.-M. (2000). Model comparisons and model selections based on generalization criterion methodology. Journal of Mathematical Psychology, 44(1), 171–189. (PMID: 10733863)
Cai, C., Sekihara, K., & Nagarajan, S. S. (2018). Hierarchical multiscale Bayesian algorithm for robust MEG/EEG source reconstruction. NeuroImage, 183, 698–715. (PMID: 30059734)
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.
Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., & Frank, M. J. (2011). Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nature Neuroscience, 14(11), 1462–1467. (PMID: 219463253394226)
Chandrasekaran, C., & Hawkins, G. E. (2019). ChaRTr: An R toolbox for modeling choices and response times in decision-making tasks. Journal of Neuroscience Methods, 328, 108432. (PMID: 315868686980795)
Charupanit, K., & Lopour, B. (2017). A simple statistical method for the automatic detection of ripples in human intracranial EEG. Brain Topography, 30(6), 724–738. (PMID: 28748408)
Chrysikou, E. G., Berryhill, M. E., Bikson, M., & Coslett, H. B. (2017). Editorial: Revisiting the effectiveness of transcranial direct current brain stimulation for cognition: Evidence, challenges, and open questions. Frontiers in Human Neuroscience, 11.
Claus, S., Velis, D., Lopes da Silva, F. H., Viergever, M. A., & Kalitzin, S. (2012). High frequency spectral components after Secobarbital: The contribution of muscular origin—A study with MEG/EEG. Epilepsy Research, 100(1), 132–141. (PMID: 22476037)
Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT Press.
Craddock, M. (2023). eegUtils: Utilities for eeg data analysis. https://github.com/craddm/eegUtils . Accessed 19 Aug 2023.
Crone, N. E., Miglioretti, D. L., Gordon, B., Sieracki, J. M., Wilson, M. T., Uematsu, S., & Lesser, R. P. (1998). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain, 121(12), 2271–2299. (PMID: 9874480)
Daunizeau, J., David, O., & Stephan, K. E. (2011). Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage, 58(2), 312–322. (PMID: 19961941)
David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: Coupling and neuronal dynamics. NeuroImage, 20(3), 1743–1755. (PMID: 14642484)
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. (PMID: 15102499)
Devezer, B., Navarro, D. J., Vandekerckhove, J., & Ozge Buzbas, E. (2021). The case for formal methodology in scientific reform. Royal Society Open Science, 8(3), 200805. (PMID: 340359338101540)
Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses about chances, the order of a markov chain. The Annals of Mathematical Statistics, 41(1), 214–226.
Ding, J., Sperling, G., & Srinivasan, R. (2006). Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cerebral Cortex, 16(7), 1016–1029. (PMID: 16221931)
Donoghue, T., Schaworonkow, N., & Voytek, B. (2022). Methodological considerations for studying neural oscillations. European Journal of Neuroscience, 55(11–12), 3502–3527. (PMID: 34268825)
Dutilh, G., Annis, J., Brown, S. D., Cassey, P., Evans, N. J., Grasman, R. P. P. P., ... Donkin, C. (2019). The quality of response time data inference: A blinded, collaborative assessment of the validity of cognitive models. Psychonomic Bulletin & Review, 26(4), 1051–1069.
Etienne, A., Laroia, T., Weigle, H., Afelin, A., Kelly, S. K., Krishnan, A., & Grover, P. (2020). Novel electrodes for reliable EEG recordings on coarse and curly hair. In 2020 42nd Annual international conference of the IEEE engineering in medicine & biology society (EMBC) (pp. 6151–6154). IEEE.
Etz, A., & Vandekerckhove, J. (2018). Introduction to bayesian inference for psychology. Psychonomic Bulletin & Review, 25(1), 5–34.
Farrell, S., & Lewandowsky, S. (2018). Computational modeling of cognition and behavior. Cambridge: Cambridge University Press.
Farrens, J., Simmons, A., Luck, S., & Kappenman, E. (2020). Electroencephalogram (EEG) recording protocol for cognitive and affective human neuroscience researc. Technical report.
Fengler, A., Bera, K., Pedersen, M. L., & Frank, M. J. (2022). Beyond drift diffusion models: Fitting a broad class of decision and reinforcement learning models with HDDM. Journal of Cognitive Neuroscience, 34(10), 1780–1805. (PMID: 35939629)
Fengler, A., Govindarajan, L. N., Chen, T., & Frank, M. J. (2021). Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience. eLife, 10, e65074. (PMID: 338217888102064)
Fitzgibbon, S., DeLosAngeles, D., Lewis, T., Powers, D., Grummett, T., Whitham, E., ... Pope, K. (2016). Automatic determination of emg-contaminated components and validation of independent component analysis using eeg during pharmacologic paralysis. Clinical neurophysiology, 127(3), 1781–1793.
Forstmann, B., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67(1), 641–666. (PMID: 26393872)
Forstmann, B. U., & Wagenmakers, E.-J. (Eds.). (2015). An introduction to model-based cognitive neuroscience. New York, NY: Springer, New York.
Frank, M. J., Gagne, C., Nyhus, E., Masters, S., Wiecki, T. V., Cavanagh, J. F., & Badre, D. (2015). fmri and eeg predictors of dynamic decision parameters during human reinforcement learning. Journal of Neuroscience, 35(2), 485–494. (PMID: 25589744)
Gelman, A. (2020). Prior choice recommendations. https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Boca Raton, FL: Taylor & Francis Group, LLC.
Ghaderi-Kangavari, A., Parand, K., Ebrahimpour, R., Nunez, M. D., & Amani Rad, J. (2023a). How spatial attention affects the decision process: Looking through the lens of bayesian hierarchical diffusion model & eeg analysis. Journal of Cognitive Psychology, 35(4), 456–479.
Ghaderi-Kangavari, A., Rad, J. A., & Nunez, M. D. (2023b). A general integrative neurocognitive modeling framework to jointly describe eeg and decision-making on single trials. Computational Brain & Behavior (pp. 1–60).
Ghaderi-Kangavari, A., Rad, J. A., Parand, K., & Nunez, M. D. (2022). Neuro-cognitive models of single-trial eeg measures describe latent effects of spatial attention during perceptual decision making. Journal of Mathematical Psychology, 111, 102725.
Gherman, S., & Philiastides, M. G. (2018). Human VMPFC encodes early signatures of confidence in perceptual decisions. eLife, 7, e38293. (PMID: 302471236199131)
Glomb, K., Cabral, J., Cattani, A., Mazzoni, A., Raj, A., & Franceschiello, B. (2021). Computational models in electroencephalography. Brain Topography.
Gluth, S., Rieskamp, J., & Büchel, C. (2013). Classic EEG motor potentials track the emergence of value-based decisions. NeuroImage, 79, 394–403. (PMID: 23664943)
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., ... Parkkonen, L., et al. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in neuroscience (pp. 267).
Greischar, L. L., Burghy, C. A., van Reekum, C. M., Jackson, D. C., Pizzagalli, D. A., Mueller, C., & Davidson, R. J. (2004). Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording. Clinical Neurophysiology, 115(3), 710–720. (PMID: 15036067)
Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., ... Steingroever, H. (2017). A tutorial on bridge sampling. Journal of mathematical psychology, 81, 80–97.
Gronau, Q. F., Heathcote, A., & Matzke, D. (2020). Computing bayes factors for evidence-accumulation models using warp-iii bridge sampling. Behavior Research Methods, 52(2), 918–937. (PMID: 31755028)
Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in psychological science. Perspectives on Psychological Science, 16(4), 789–802. (PMID: 33482070)
Hagen, E., Magnusson, S. H., Ness, T. V., Halnes, G., Babu, P. N., Linssen, C., ... Einevoll, G. T. (2022). Brain signal predictions from multi-scale networks using a linearized framework. PLOS Computational Biology, 18(8), e1010353.
Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430. (PMID: 8832893)
Harris, A., & Hutcherson, C. A. (2022). Temporal dynamics of decision making: A synthesis of computational and neurophysiological approaches. WIREs Cognitive Science, 13(3), e1586. (PMID: 34854573)
Hautus, M. J., Macmillan, N. A., & Creelman, C. D. (2021). Detection theory: A user’s guide. Routledge.
Hawkins, G. E., Cavanagh, J. F., Brown, D., S., & Steyvers, M. (2023). Cognitive models as a tool to link decision behavior with EEG signals. In B. M. Turner & B. U. Forstmann (Eds.), An introduction to model-based cognitive neuroscience (2nd ed.). New York, NY: Springer New York. Forthcoming.
Hawkins, G. E., & Heathcote, A. (2021). Racing against the clock: Evidence-based versus time-based decisions. Psychological Review, 128(2), 222. (PMID: 33600202)
Hawkins, G. E., Mittner, M., Forstmann, B. U., & Heathcote, A. (2017). On the efficiency of neurally-informed cognitive models to identify latent cognitive states. Journal of Mathematical Psychology, 76, 142–155.
Hawkins, G. E., Mittner, M., Forstmann, B. U., & Heathcote, A. (2022). Self-reported mind wandering reflects executive control and selective attention. Psychonomic Bulletin & Review, 29(6), 2167–2180.
Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M., & Matzke, D. (2019). Dynamic models of choice. Behavior Research Methods, 51(2), 961–985. (PMID: 29959755)
Heathcote, A., & Matzke, D. (2022). Winner takes all! What are race models, and why and how should psychologists use them? Current Directions in Psychological Science, 31(5), 383–394.
Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483–1492.
Ilmoniemi, R. J. & Sarvas, J. (2019). Brain signals: Physics and mathematics of MEG and EEG. MIT Press.
Jagannathan, S. R., Bareham, C. A., & Bekinschtein, T. A. (2021). Decreasing alertness modulates perceptual decision-making. Journal of Neuroscience.
Jeffreys, H. (1961). Theory of probability. Oxford University Press.
Jensen, O. & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4.
Jensen, K. M., & MacDonald, J. A. (2023). Towards thoughtful planning of ERP studies: How participants, trials, and effect magnitude interact to influence statistical power across seven ERP components. Psychophysiology, 60(7), e14245. (PMID: 36577739)
Jun, E. J., Bautista, A. R., Nunez, M. D., Allen, D. C., Tak, J. H., Alvarez, E., & Basso, M. A. (2021). Causal role for the primate superior colliculus in the computation of evidence for perceptual decisions. Nature Neuroscience (pp. 1–11).
Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(02), 163–178. (PMID: 10731767)
Kappenman, E. S., & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47(5), 888–904. (PMID: 203745412902592)
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.
Kelly, S. P., & O’Connell, R. G. (2013). Internal and external influences on the rate of sensory evidence accumulation in the human brain. Journal of Neuroscience, 33(50), 19434–19441. (PMID: 24336710)
Klatt, L.-I., Schneider, D., Schubert, A.-L., Hanenberg, C., Lewald, J., Wascher, E., & Getzmann, S. (2020). Unraveling the relation between EEG correlates of attentional orienting and sound localization performance: A diffusion model approach. Journal of Cognitive Neuroscience, 32(5), 945–962. (PMID: 31933435)
Kohl, C., Spieser, L., Forster, B., Bestmann, S., & Yarrow, K. (2020). Centroparietal activity mirrors the decision variable when tracking biased and time-varying sensory evidence. Cognitive Psychology, 122, 101321. (PMID: 32592971)
Kording, K., Blohm, G., Schrater, P., & Kay, K. (2018). Appreciating diversity of goals in computational neuroscience. PsyArXiv.
Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences, 108(33), 13852–13857.
Kvam, P. D., Marley, A., & Heathcote, A. (2023). A unified theory of discrete and continuous responding. Psychological Review, 130(2), 368. (PMID: 35862077)
Lee, M. D. & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge university press.
Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P., ... Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2(3), 141–153.
Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology, 55(1), 1–7.
Lee, M. D., & Vanpaemel, W. (2018). Determining informative priors for cognitive models. Psychonomic Bulletin & Review, 25(1), 114–127.
Lerche, V., von Krause, M., Voss, A., Frischkorn, G. T., Schubert, A.-L., & Hagemann, D. (2020). Diffusion modeling and intelligence: Drift rates show both domain-general and domain-specific relations with intelligence. Journal of Experimental Psychology: General, 149(12), 2207. (PMID: 32378959)
Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required for parameter estimation in diffusion modeling? a comparison of different optimization criteria. Behavior Research Methods, 49, 513–537. (PMID: 27287445)
Li, A., Feitelberg, J., Saini, A. P., Höchenberger, R., & Scheltienne, M. (2022). MNE-ICALabel: Automatically annotating ICA components with ICLabel in Python. Journal of Open Source Software, 7(76), 4484.
Loughnane, G. M., Newman, D. P., Bellgrove, M. A., Lalor, E. C., Kelly, S. P., & O’Connell, R. G. (2016). Target selection signals influence perceptual decisions by modulating the onset and rate of evidence accumulation. Current Biology, 26(4), 496–502. (PMID: 26853360)
Luck, S. J. (2012). Event-related potentials. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol. 1. Foundations, planning, measures, and psychometrics (pp. 523–546). American Psychological Association.
Luck, S. J. (2014). An introduction to the event-related potential technique, Second edition. MIT Press.
Luck, S. J. (2022). Applied event-related potential data analysis. LibreTexts.
Lui, K. K., Nunez, M. D., Cassidy, J. M., Vandekerckhove, J., Cramer, S. C., & Srinivasan, R. (2021). Timing of readiness potentials reflect a decision-making process in the human brain. Computational Brain & Behavior, 4(3), 264–283.
Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. Advances in neural information processing systems (pp. 145–151).
Manning, C., Hassall, C. D., Laurence, T. H., Norcia, A. M., Wagenmakers, E.-J., Snowling, M. J., ... Evans, N. J. (2021). Visual motion and decision-making in dyslexia: Evidence of reduced accumulation of sensory evidence and related neural dynamics. Technical report.
Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16(5), 798–817.
McElreath, R. (2018). Statistical rethinking: A bayesian course with examples in R and Stan. CRC Press.
McElreath, R. (2020). Statistical rethinking: A bayesian course with examples in R and stan (2nd ed.). New York: Chapman and Hall/CRC.
McFarland, D. J., Miner, L. A., Vaughan, T. M., & Wolpaw, J. R. (2000). Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topography, 12(3), 177–186. (PMID: 10791681)
Mendes, A. J., Pacheco-Barrios, K., Lema, A., Gonçalves, Ó. F., Fregni, F., Leite, J., & Carvalho, S. (2022). Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 132, 894–907.
Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229–240. (PMID: 20636297)
Muthukumaraswamy, S. (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations. Frontiers in Human Neuroscience, 7.
Myung, J. I., & Pitt, M. A. (2018). Model comparison in psychology. Stevens’ handbook of experimental psychology and cognitive neuroscience, 5, 85–118.
Næss, S., Halnes, G., Hagen, E., Hagler, D. J., Dale, A. M., Einevoll, G. T., & Ness, T. V. (2021). Biophysically detailed forward modeling of the neural origin of EEG and MEG signals. NeuroImage, 225, 117467. (PMID: 33075556)
Navarro, D. J. (2019). Between the devil and the deep blue sea: Tensions between scientific judgement and statistical model selection. Computational Brain & Behavior, 2(1), 28–34.
Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6), 2201–2211. (PMID: 3385495)
Nunez, P. L. & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG (2nd ed.). Oxford; New York: Oxford University Press.
Nunez, M. D., Srinivasan, R., & Vandekerckhove, J. (2015). Individual differences in attention influence perceptual decision making. Frontiers in Psychology, 8.
Nunez, M. D., Charupanit, K., Sen-Gupta, I., Lopour, B. A., & Lin, J. J. (2022). Beyond rates: time-varying dynamics of high frequency oscillations as a biomarker of the seizure onset zone. Journal of Neural Engineering, 19(1), 016034.
Nunez, M. D., Gosai, A., Vandekerckhove, J., & Srinivasan, R. (2019a). The latency of a visual evoked potential tracks the onset of decision making. NeuroImage, 197, 93–108.
Nunez, P. L., Nunez, M. D., & Srinivasan, R. (2019b). Multi-scale neural sources of EEG: Genuine, equivalent, and representative. A Tutorial Review. Brain Topography, 32(2), 193–214.
Nunez, M. D., Nunez, P. L., & Srinivasan, R. (2016). Electroencephalography (EEG): Neurophysics, experimental methods, and signal processing. In H. Ombao, M. Linquist, W. Thompson, & J. Aston (Eds.), Handbook of neuroimaging data analysis (pp. 175–197). Chapman & Hall/CRC.
Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017). How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117–130. (PMID: 28435173)
Nunez, P. L., Wingeier, B. M., & Silberstein, R. B. (2001). Spatial-temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of local networks. Human Brain Mapping, 13(3), 125–164. (PMID: 113765006872048)
Oberauer, K., & Lewandowsky, S. (2019). Addressing the theory crisis in psychology. Psychonomic bulletin & review, 26, 1596–1618.
Oberauer, K., & Lewandowsky, S. (2019). Simple measurement models for complex working-memory tasks. Psychological Review, 126(6), 880. (PMID: 31524425)
Oberauer, K., & Lin, H.-Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21. (PMID: 27869455)
O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Neuroscience, 15(12), 1729–1735. (PMID: 23103963)
O’Connell, R. G., Shadlen, M. N., Wong-Lin, K., & Kelly, S. P. (2018). Bridging neural and computational viewpoints on perceptual decision-making. Trends in Neurosciences, 41(11), 838–852. (PMID: 300077466215147)
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1–9.
Ostwald, D., Porcaro, C., Mayhew, S. D., & Bagshaw, A. P. (2012). EEG-fMRI based information theoretic characterization of the human perceptual decision system. PLoS ONE, 7(4), e33896. (PMID: 224851523317669)
Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., & Turner, B. M. (2018). A tutorial on joint models of neural and behavioral measures of cognition. Journal of Mathematical Psychology, 84, 20–48.
Parra, L. C., Spence, C. D., Gerson, A. D., & Sajda, P. (2005). Recipes for the linear analysis of EEG. NeuroImage, 28(2), 326–341. (PMID: 16084117)
Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band — an electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1), 39–46. (PMID: 8978434)
Philiastides, M. G., Heekeren, H. R., & Sajda, P. (2014). Human scalp potentials reflect a mixture of decision-related signals during perceptual choices. Journal of Neuroscience, 34(50), 16877–16889. (PMID: 25505339)
Philiastides, M. G., Ratcliff, R., & Sajda, P. (2006). Neural representation of task difficulty and decision making during perceptual categorization: A timing diagram. Journal of Neuroscience, 26(35), 8965–8975. (PMID: 16943552)
Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage, 198, 181–197. (PMID: 31103785)
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003), Vienna, Austria.
Polanía, R., Krajbich, I., Grueschow, M., & Ruff, C. C. (2014). Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. Neuron, 82(3), 709–720. (PMID: 24811387)
Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. IEEE Transactions on Neural Networks and Learning Systems (pp. 1–15).
Rahnev, D. (2021). Visual metacognition: Measures, models, and neural correlates. American Psychologist, 76(9), 1445–1453. (PMID: 35266744)
Rangelov, D. & Mattingley, J. B. (2020). Evidence accumulation during perceptual decision-making is sensitive to the dynamics of attentional selection. NeuroImage (pp. 117093).
Ratcliff, R. (2018). Decision making on spatially continuous scales. Psychological Review, 125(6), 888. (PMID: 304313026242349)
Ratcliff, R., Philiastides, M. G., & Sajda, P. (2009). Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. Proceedings of the National Academy of Sciences, 106(16), 6539–6544.
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260–281. (PMID: 269527394928591)
Regan, D. (1977). Steady-state evoked potentials. JOSA, 67(11), 1475–1489.
Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475–9489. (PMID: 12417672)
Rouder, J. N., & Morey, R. D. (2012). Default bayes factors for model selection in regression. Multivariate Behavioral Research, 47(6), 877–903. (PMID: 26735007)
Rouder, J. N., Province, J. M., Morey, R. D., Gomez, P., & Heathcote, A. (2015). The lognormal race: A cognitive-process model of choice and latency with desirable psychometric properties. Psychometrika, 80, 491–513. (PMID: 24522340)
Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2, e55.
Schad, D. J., Betancourt, M., & Vasishth, S. (2021). Toward a principled Bayesian workflow in cognitive science. Psychological Methods, 26(1), 103–126. (PMID: 32551748)
Schall, J. D. (2004). On building a bridge between brain and behavior. Annual Review of Psychology, 55, 23–50. (PMID: 14744209)
Schaworonkow, N., & Voytek, B. (2021). Enhancing oscillations in intracranial electrophysiological recordings with data-driven spatial filters. PLoS Computational Biology, 17(8), e1009298. (PMID: 344110968407590)
Schmitt, M., Bürkner, P.-C., Köthe, U., & Radev, S. T. (2022). BayesFlow can reliably detect model misspecification and posterior errors in amortized Bayesian inference.
Schubert, A.-L., Frischkorn, G. T., Hagemann, D., & Voss, A. (2016). Trait characteristics of diffusion model parameters. Journal of Intelligence, 4(3), 7.
Schubert, A.-L., Nunez, M. D., Hagemann, D., & Vandekerckhove, J. (2019). Individual differences in cortical processing speed predict cognitive abilities: A model-based cognitive neuroscience account. Computational Brain & Behavior, 2(2), 64–84.
Shadlen, M., & Kiani, R. (2013). Decision making as a window on cognition. Neuron, 80(3), 791–806. (PMID: 24183028)
Smith, P. L. (2016). Diffusion theory of decision making in continuous report. Psychological Review, 123(4), 425–451. (PMID: 26949831)
Srinivasan, R. (2004). Internal and external neural synchronization during conscious perception. International Journal of Bifurcation and Chaos, 14(02), 825–842.
Srinivasan, R., Thorpe, S., & Nunez, P. L. (2013). Top-down influences on local networks: basic theory with experimental implications. Frontiers in Computational Neuroscience, 7, 29. (PMID: 236167623629312)
Stevenson, N., Innes, R., Boag, R., & Heathcote, A. (2023). Model based sampling with EMC 2-Extended models of choice. Forthcoming.
Swart, J. C., Frank, M. J., Määttä, J. I., Jensen, O., Cools, R., & den Ouden, H. E. (2018). Frontal network dynamics reflect neurocomputational mechanisms for reducing maladaptive biases in motivated action. PLoS Biology, 16(10), e2005979. (PMID: 303357456207318)
Teller, D. Y. (1984). Linking propositions. Vision Research, 24(10), 1233–1246. (PMID: 6395480)
The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b).
Thomas, A. W., Molter, F., & Krajbich, I. (2021). Uncovering the computational mechanisms underlying many-alternative choice. eLife, 10.
Tran, N.-H., van Maanen, L., Heathcote, A., & Matzke, D. (2021). Systematic parameter reviews in cognitive modeling: Towards a robust and cumulative characterization of psychological processes in the diffusion decision model. Frontiers in Psychology, 11.
Turner, B. M., Forstmann, B. U., & Steyvers, M. (2019). Joint models of neural and behavioral data. Computational approaches to cognition and perception. Springer International Publishing.
Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & Van Maanen, L. (2017). Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 65–79. (PMID: 31745373)
Turner, B. M., Rodriguez, C. A., Norcia, T. M., McClure, S. M., & Steyvers, M. (2016). Why more is better: Simultaneous modeling of EEG, fMRI, and behavioral data. NeuroImage, 128, 96–115. (PMID: 26723544)
Twomey, D. M., Murphy, P. R., Kelly, S. P., & O’Connell, R. G. (2015). The classic P300 encodes a build-to-threshold decision variable. European Journal of Neuroscience, 42(1), 1636–1643. (PMID: 25925534)
van Doorn, J., van den Bergh, D., Böhm, U., Dablander, F., Derks, K., Draws, T., ... Wagenmakers, E.-J. (2021). The JASP guidelines for conducting and reporting a Bayesian analysis. Psychonomic Bulletin & Review, 28(3), 813–826.
van Ravenzwaaij, D., Brown, S. D., Marley, A., & Heathcote, A. (2020). Accumulating advantages: A new conceptualization of rapid multiple choice. Psychological Review, 127(2), 186. (PMID: 31580104)
van Ravenzwaaij, D., Cassey, P., & Brown, S. D. (2018). A simple introduction to Markov Chain Monte-Carlo sampling. Psychonomic Bulletin & Review, 25(1), 143–154.
van Ravenzwaaij, D., & Etz, A. (2021). Simulation studies as a tool to understand Bayes factors. Advances in Methods and Practices in Psychological Science, 4(1), 2515245920972624.
van Ravenzwaaij, D., Provost, A., & Brown, S. D. (2017). A confirmatory approach for integrating neural and behavioral data into a single model. Journal of Mathematical Psychology, 76, 131–141.
van Rooij, I., & Baggio, G. (2020). Theory development requires an epistemological sea change. Psychological Inquiry, 31(4), 321–325.
van Vugt, M., Simen, P., Nystrom, L., Holmes, P., & Cohen, J. (2012). EEG Oscillations reveal neural correlates of evidence accumulation. Frontiers in Neuroscience, 6, 106. (PMID: 228223893398314)
Vandekerckhove, J., White, C. N., Trueblood, J. S., Rouder, J. N., Matzke, D., Leite, F. P., ... Lee, M. D. (2019). Robust diversity in cognitive science. Computational Brain & Behavior, 2(3), 271–276.
Vehtari, A. (2023). Model selection tutorials and talks. https://avehtari.github.io/modelselection/CV-FAQ.html .
Verdinelli, I., & Wasserman, L. (1995). Computing Bayes factors using a generalization of the savage-dickey density ratio. Journal of the American Statistical Association, 90(430), 614–618.
Villarreal, J. M., Chávez, A., Mistry, P. K., Menon, V. E., Vandekerckhove, J., & Lee, M. (2023). Bayesian graphical modeling with the circular drift diffusion model.
Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32(7), 1206–1220.
Wabersich, D. & Vandekerckhove, J. (2013). jags-wiener: A diffusion model plugin for JAGS.
Wabersich, D., & Vandekerckhove, J. (2014). Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example). Behavior Research Methods, 46, 15–28. (PMID: 23959766)
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the savage-dickey method. Cognitive Psychology, 60(3), 158–189. (PMID: 20064637)
Walter, E. (1987). Identifiability of parametric models. Elsevier Science & Technology.
Wang, Z. J., & Busemeyer, J. R. (2021). Cognitive choice modeling. Cognitive choice modeling. Cambridge, MA, US: The MIT Press.
Weindel, G., van Maanen, L., & Borst, J. P. (2023). HsMM Mvpy. https://github.com/GWeindel/hsmm_mvpy . Accessed 19 Aug 2023.
Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless, S., ... Willoughby, J. O. (2007). Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20Hz are contaminated by EMG. Clinical Neurophysiology, 118(8), 1877–1888.
Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical bayesian estimation of the drift-diffusion model in python. Frontiers in neuroinformatics (pp. 14).
Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8, e49547. (PMID: 317694106879303)
Zhang, Q., van Vugt, M., Borst, J. P., & Anderson, J. R. (2018). Mapping working memory retrieval in space and in time: A combined electroencephalography and electrocorticography approach. NeuroImage, 174, 472–484. (PMID: 29571716)
Weitere Informationen
We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically those researchers who seek to understand human cognition. Although these techniques could easily be applied to animal models, the focus of this tutorial is on human participants. Joint modeling of M/EEG and behavior requires some knowledge of existing computational and cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive modeling, and programming for statistical modeling implementation. This paper seeks to give an introduction to these techniques as they apply to estimating parameters from neurocognitive models of M/EEG and human behavior, and to evaluate model results and compare models. Due to our research and knowledge on the subject matter, our examples in this paper will focus on testing specific hypotheses in human decision-making theory. However, most of the motivation and discussion of this paper applies across many modeling procedures and applications. We provide Python (and linked R) code examples in the tutorial and appendix. Readers are encouraged to try the exercises at the end of the document.
(© 2024. The Author(s).)