Treffer: Tracing topics and trends in drug-resistant epilepsy research using a natural language processing-based topic modeling approach.
Original Publication: Copenhagen : Munskgaard
Devinsky O. Patients with refractory seizures. N Engl J Med. 1999;340(20):1565–1570. https://doi.org/10.1056/NEJM199905203402008.
McCagh J, Fisk JE, Baker GA. Epilepsy, psychosocial and cognitive functioning. Epilepsy Res. 2009;86(1):1–14. https://doi.org/10.1016/j.eplepsyres.2009.04.007.
Kwan P. The natural history of epilepsy: an epidemiological view. J Neurol Neurosurg Psychiatry. 2004;75(10):1376–1381. https://doi.org/10.1136/jnnp.2004.045690.
Brodie MJ. Antiepileptic drug therapy the story so far. Seizure. 2010;19(10):650–655. https://doi.org/10.1016/j.seizure.2010.10.027.
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–319. https://doi.org/10.1056/NEJM200002033420503.
Panayiotopoulos C. Old versus new antiepileptic drugs: the SANAD study. Lancet. 2007;370(9584):313–314. https://doi.org/10.1016/S0140‐6736(07)61150‐7.
Mula M, Cock HR. More than seizures: improving the lives of people with refractory epilepsy. Eur J Neurol. 2015;22(1):24–30. https://doi.org/10.1111/ene.12603.
Tomson T, Walczak T, Sillanpaa M, Sander JWAS. Sudden unexpected death in epilepsy: a review of incidence and risk factors. Epilepsia. 2005;46(s11):54–61. https://doi.org/10.1111/j.1528‐1167.2005.00411.x.
Pham MT, Rajić A, Greig JD, Sargeant JM, Papadopoulos A, McEwen SA. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods. 2014;5(4):371–385. https://doi.org/10.1002/jrsm.1123.
Borah R, Brown AW, Capers PL, Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open. 2017;7(2):e012545. https://doi.org/10.1136/bmjopen‐2016‐012545.
Scaccia JP, Scott VC. 5335 days of implementation science: using natural language processing to examine publication trends and topics. Implement Sci. 2021;16:47. https://doi.org/10.1186/s13012‐021‐01120‐4.
Watanabe G, Conching A, Nishioka S, Steed T, Matsunaga M, Lozanoff S, et al. Themes in neuronavigation research: a machine learning topic analysis. World Neurosurg X. 2023;18:100182. https://doi.org/10.1016/j.wnsx.2023.100182.
Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. 2013 Accessed May 13, 2023. Available from: https://arxiv.org/abs/1301.3781v3.
Chowdhary KR. Natural language processing. Fundamentals of artificial intelligence. New Delhi: Springer India; 2020. p. 603–649. https://doi.org/10.1007/978‐81‐322‐3972‐7_19.
Grootendorst M. BERTopic: neural topic modeling with a class‐based TF‐IDF procedure. 2022 Accessed May 13, 2023. Available from: https://arxiv.org/abs/2203.05794v1.
Devlin J, Chang M‐W, Lee K, Toutanova K. BERT: pre‐training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North Association for Computational Linguistics: Minneapolis, Minnesota; 2019. p. 4171–4186. Minneapolis, Minnesota, Association for Computational Linguistics. https://doi.org/10.18653/v1/N19‐1423.
Deka P, Jurek‐Loughrey A, Padmanabhan D. Improved methods to aid unsupervised evidence‐based fact checking for online health news. J Data Intell. 2022;3(4):474–505. https://doi.org/10.26421/JDI3.4‐5.
Bird S, Klein E, Loper E. Natural language processing with python: analyzing text with the natural language toolkit. 2009.
Bittermann A, Fischer A. How to identify hot topics in psychology using topic modeling. Z Psychol. 2018;226(1):3–13. https://doi.org/10.1027/2151‐2604/a000318.
Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010;9(1):68–82. https://doi.org/10.1038/nrd2997.
Brodie MJ, Sills GJ. Combining antiepileptic drugs—rational polytherapy? Seizure. 2011;20(5):369–375. https://doi.org/10.1016/j.seizure.2011.01.004.
Han L, Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain‐targeting drug delivery strategies. Acta Pharm Sin B. 2021;11(8):2306–2325. https://doi.org/10.1016/j.apsb.2020.11.023.
Gesche J, Christensen J, Hjalgrim H, Rubboli G, Beier CP. Epidemiology and outcome of idiopathic generalized epilepsy in adults. Eur J Neurol. 2020;27(4):676–684. https://doi.org/10.1111/ene.14142.
González HFJ, Yengo‐Kahn A, Englot DJ. Vagus nerve stimulation for the treatment of epilepsy. Neurosurg Clin N Am. 2019;30(2):219–230. https://doi.org/10.1016/j.nec.2018.12.005.
Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain‐responsive neurostimulation for epilepsy (RNS® system). Epilepsy Res. 2019;153:68–70. https://doi.org/10.1016/j.eplepsyres.2019.02.003.
Roa JA, Abramova M, Fields M, Vega‐Talbott ML, Yoo J, Marcuse L, et al. Responsive Neurostimulation of the thalamus for the treatment of refractory epilepsy. Front Hum Neurosci. 2022;16:926337. https://doi.org/10.3389/fnhum.2022.926337.
Li MCH, Cook MJ. Deep brain stimulation for drug‐resistant epilepsy. Epilepsia. 2018;59(2):273–290. https://doi.org/10.1111/epi.13964.
Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: state‐of‐the‐art approved therapies. Lancet Neurol. 2021;20(12):1038–1047. https://doi.org/10.1016/S1474‐4422(21)00300‐8.
Absalom NL, Ahring PK, Liao VW, Balle T, Jiang T, Anderson LL, et al. Functional genomics of epilepsy‐associated mutations in the GABAA receptor subunits reveal that one mutation impairs function and two are catastrophic. J Biol Chem. 2019;294(15):6157–6171. https://doi.org/10.1074/jbc.RA118.005697.
Baulac S, Huberfeld G, Gourfinkel‐An I, Mitropoulou G, Beranger A, Prud'homme JF, et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2‐subunit gene. Nat Genet. 2001;28(1):46–48. https://doi.org/10.1038/ng0501‐46.
Lucas PT, Meadows LS, Nicholls J, Ragsdale DS. An epilepsy mutation in the β1 subunit of the voltage‐gated sodium channel results in reduced channel sensitivity to phenytoin. Epilepsy Res. 2005;64(3):77–84. https://doi.org/10.1016/j.eplepsyres.2005.03.003.
Wallace RH, Scheffer IE, Parasivam G, Barnett S, Wallace GB, Sutherland GR, et al. Generalized epilepsy with febrile seizures plus: mutation of the sodium channel subunit SCN1B. Neurology. 2002;58(9):1426–1429. https://doi.org/10.1212/WNL.58.9.1426.
Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage‐gated sodium channel Scn2a. Epilepsia. 2016;57(6):e103–e107. https://doi.org/10.1111/epi.13390.
Striano P, Minassian BA. From genetic testing to precision medicine in epilepsy. Neurotherapeutics. 2020;17(2):609–615. https://doi.org/10.1007/s13311‐020‐00835‐4.
Li X, Cui L, Zhang G, Lhatoo SD. Can big data guide prognosis and clinical decisions in epilepsy? Epilepsia. 2021;62(S2):S106–S115. https://doi.org/10.1111/epi.16786.
Josephson CB, Wiebe S. Precision medicine: academic dreaming or clinical reality? Epilepsia. 2021;62(S2):S78–S89. https://doi.org/10.1111/epi.16739.
Golub V, Reddy DS. Cannabidiol therapy for refractory epilepsy and seizure disorders. Adv Exp Med Biol. 2021;1264:93–110. https://doi.org/10.1007/978‐3‐030‐57369‐0_7.
Commissioner O of the. FDA Regulation of Cannabis and Cannabis‐Derived Products. Including Cannabidiol (CBD). FDA. 2023;1264.
Ibeas Bih C, Chen T, Nunn AVW, Bazelot M, Dallas M, Whalley BJ. Molecular targets of Cannabidiol in neurological disorders. Neurotherapeutics. 2015;12(4):699–730. https://doi.org/10.1007/s13311‐015‐0377‐3.
Mechoulam R, Parker LA, Gallily R. Cannabidiol: An overview of some pharmacological aspects. J Clin Pharmacol. 2002;42(S1):11S–19S. https://doi.org/10.1002/j.1552‐4604.2002.tb05998.x.
Tharin S, Golby A. Functional brain mapping and its applications to neurosurgery. Operative Neurosurg. 2007;60(4):185–202. https://doi.org/10.1227/01.NEU.0000255386.95464.52.
Detre JA. fMRI: applications in epilepsy. Epilepsia. 2004;45(s4):26–31. https://doi.org/10.1111/j.0013‐9580.2004.04006.x.
Sukprakun C, Tepmongkol S. Nuclear imaging for localization and surgical outcome prediction in epilepsy: a review of latest discoveries and future perspectives. Front Neurol. 2022;13:1083775. https://doi.org/10.3389/fneur.2022.1083775.
Edmonds BD, Welch W, Sogawa Y, Mountz J, Bagić A, Patterson C. The role of magnetoencephalography and single‐photon emission computed tomography in evaluation of children with drug‐resistant epilepsy. J Child Neurol. 2021;36(8):673–679. https://doi.org/10.1177/0883073821996558.
Abbott DF, Archer JS, Carney PW, Vaughan DN, Jackson GD. Editorial: functional brain mapping of epilepsy networks: methods and applications. Front Neurosci. 2019;13:417. https://doi.org/10.3389/fnins.2019.00417.
Coito A, Michel CM, Vulliemoz S, Plomp G. Directed functional connections underlying spontaneous brain activity. Hum Brain Mapp. 2019;40(3):879–888. https://doi.org/10.1002/hbm.24418.
Kapeller C, Korostenskaja M, Prueckl R, Chen PC, Lee KH, Westerveld M, et al. CortiQ‐based real‐time functional mapping for epilepsy surgery. J Clin Neurophysiol. 2015;32(3):e12–e22. https://doi.org/10.1097/WNP.0000000000000131.
Stier C, Loose M, Kotikalapudi R, Elshahabi A, Li Hegner Y, Marquetand J, et al. Combined electrophysiological and morphological phenotypes in patients with genetic generalized epilepsy and their healthy siblings. Epilepsia. 2022;63(7):1643–1657. https://doi.org/10.1111/epi.17258.
Dubey D, Alqallaf A, Hays R, Freeman M, Chen K, Ding K, et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol. 2017;74(4):397–402. https://doi.org/10.1001/jamaneurol.2016.5429.
Nosadini M, Mohammad SS, Ramanathan S, Brilot F, Dale RC. Immune therapy in autoimmune encephalitis: a systematic review. Expert Rev Neurother. 2015;15(12):1391–1419. https://doi.org/10.1586/14737175.2015.1115720.
Armangue T, Spatola M, Vlagea A, Mattozzi S, Cárceles‐Cordon M, Martinez‐Heras E, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018;17(9):760–772. https://doi.org/10.1016/S1474‐4422(18)30244‐8.
Dubey D, Pittock SJ, Kelly CR, McKeon A, Lopez‐Chiriboga AS, Lennon VA, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis: autoimmune encephalitis. Ann Neurol. 2018;83(1):166–177. https://doi.org/10.1002/ana.25131.
Ni X‐J, Zhong H, Liu Y‐X, Lin HW, Gu ZC. Current trends and hotspots in drug‐resistant epilepsy research: insights from a bibliometric analysis. Front Neurol. 2022;13:1023832. https://doi.org/10.3389/fneur.2022.1023832.
Sing DC, Metz LN, Dudli S. Machine learning‐based classification of 38 years of spine‐related literature into 100 research topics. Spine (Phila Pa 1976). 2017;42(11):863–870. https://doi.org/10.1097/BRS.0000000000002079.
Fan G, Li Y, Yang S, Qin J, Huang L, Liu H, et al. Research topics and hotspot trends of lumbar spondylolisthesis: a text‐mining study with machine learning. Front Surg. 2023;9:1037978. https://doi.org/10.3389/fsurg.2022.1037978.
Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. J Mach Learn Res. 2003;3:993–1022.
McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. 2018 https://doi.org/10.48550/ARXIV.1802.03426.
Campello RJGB, Moulavi D, Sander J. Density‐based clustering based on hierarchical density estimates. In: Pei J, Tseng VS, Cao L, et al., editors. (Eds.) Advances in knowledge discovery and data mining. Berlin, Heidelberg: Springer; 2013. p. 160–172. https://doi.org/10.1007/978‐3‐642‐37456‐2_14.Lecture Notes in Computer Science.
Weitere Informationen
Epilepsy is a common neurological disorder affecting over 70 million people worldwide. Although many patients achieve seizure control with anti-epileptic drugs (AEDs), 30%-40% develop drug-resistant epilepsy (DRE), where seizures persist despite adequate trials of AEDs. DRE is associated with reduced quality of life, increased mortality and morbidity, and greater socioeconomic challenges. The continued intractability of DRE has fueled exponential growth in research that aims to understand and treat this serious condition. However, synthesizing this vast and continuously expanding DRE literature to derive insights poses considerable difficulties for investigators and clinicians. Conventional review methods are often prolonged, hampering the timely application of findings. More-efficient approaches to analyze the voluminous research are needed. In this study, we utilize a natural language processing (NLP)-based topic modeling approach to examine the DRE publication landscape, uncovering key topics and trends. Documents were retrieved from Scopus, preprocessed, and modeled using BERTopic. This technique employs transformer models like BERT (Bidirectional Encoder Representations from Transformers) for contextual understanding, thereby enabling accurate topic categorization. Analysis revealed 18 distinct topics spanning various DRE research areas. The 10 most common topics, including "AEDs," "Neuromodulation Therapy," and "Genomics," were examined further. "Cannabidiol," "Functional Brain Mapping," and "Autoimmune Encephalitis" emerged as the hottest topics of the current decade, and were examined further. This NLP methodology provided valuable insights into the evolving DRE research landscape, revealing shifting priorities and declining interests. Moreover, we demonstrate an efficient approach to synthesizing and visualizing patterns within extensive literature that could be applied to other research fields.
(© 2024 International League Against Epilepsy.)