Treffer: Facial recognition by cloud-based APIs following surgically assisted rapid maxillary expansion.

Title:
Facial recognition by cloud-based APIs following surgically assisted rapid maxillary expansion.
Transliterated Title:
Gesichtserkennung über Cloud-basierte APIs nach chirurgisch unterstützter schneller Gaumennahterweiterung.
Authors:
Buyukcavus MH; Faculty of Dentistry, Department of Orthodontics, Antalya Bilim University, Antalya, Turkey. mhbuyukcvs@gmail.com., Aydogan Akgun F; Faculty of Dentistry, Department of Orthodontics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey., Solak S; Faculty of Technology, Department of Information Systems Engineering, Kocaeli University, Kocaeli, Turkey., Ucar MHB; Faculty of Technology, Department of Information Systems Engineering, Kocaeli University, Kocaeli, Turkey., Fındık Y; Faculty of Dentistry, Department of Department of Oral and Maxillofacial Surgery, Süleyman Demirel University, Isparta, Turkey., Baykul T; Faculty of Dentistry, Department of Department of Oral and Maxillofacial Surgery, Süleyman Demirel University, Isparta, Turkey.
Source:
Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie [J Orofac Orthop] 2025 Mar; Vol. 86 (2), pp. 98-107. Date of Electronic Publication: 2023 Sep 29.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Urban & Vogel Country of Publication: Germany NLM ID: 9713484 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-6714 (Electronic) Linking ISSN: 14345293 NLM ISO Abbreviation: J Orofac Orthop Subsets: MEDLINE
Imprint Name(s):
Original Publication: München : Urban & Vogel, c1996-
References:
Wechsler H (2009) Business Media. Reliable face recognition methods: system design, implementation and evaluation, vol 7. Springer.
Taskiran M, Kahraman N, Erdem CE (2020) Face recognition: Past, present and future (a review). Digit Signal Process 2 106:102809.
Adjabi I, Ouahabi A, Benzaoui A, Taleb-Ahmed A (2020) Past, present, and future of face recognition: A review. Electronics 9(8):1188. (PMID: 10.3390/electronics9081188)
(2021) Amazon Web Services. https://aws.amazon.com/ . Accessed 19 Nov 2021.
Face ++ face comparing api, Accessed (2021) ( https://www.faceplusplus.com.cn/facecomparing/ ). Accessed 19 Nov 2021.
(2021) Microsoft Azure. https://azure.microsoft.com . Accessed 19 Nov 2021.
Dantcheva A, Chen C, Ross A (2012) Can facial cosmetics affect the matching accuracy of face recognition systems? In, vol 2012. IEEE, Fifth international conference on biometrics: theory, applications and systems (BTAS), pp 391–398.
Libby C, Ehrenfeld J (2021) Facial Recognition Technology in 2021: Masks, Bias, and the Future of Healthcare. J Med Syst 45(4):39. (PMID: 10.1007/s10916-021-01723-w336047327891114)
Sabharwal T, Gupta R (2021) Facial marks for enhancing facial recognition after plastic surgery. Int J Inform Tech 13(1):391–396.
Chen K, Lu SM, Cheng R, Fisher M, Zhang BH, Di Maggio M, Bradley JP (2020) Facial Recognition Neural Networks Confirm Success of Facial Feminization Surgery. Plast Reconstr Surg 145(1):203–209. (PMID: 10.1097/PRS.000000000000634231592946)
Nada RM, van Loon B, Maal TJ, Bergé SJ, Mostafa YA, Kuijpers-Jagtman AM et al (2013) Three-dimensional evaluation of soft tissue changes in the orofacial region after toothborne and bonebornesurgically assisted rapid maxillary expansion. Clin Oral Investig 17(9):2017–2024. (PMID: 10.1007/s00784-013-0927-123377777)
Gonçales ES, Berrentin-Felix G, de Souza CU, Achĵa GL (2002) Evaluation of the facial soft tissues following surgically assisted maxillary expansion associated with the simple VY suture. Int J Adult Orthodon Orthognath Surg 17(2):89–97. (PMID: 12099321)
Kayalar E, Schauseil M, Hellak A, Emekli U, Fıratlı S, Korbmacher-Steiner H (2019) Nasal soft- and hard-tissue changes following tooth-borne and hybrid surgically assisted rapid expansion: A randomized clinical cone-beam computed tomography study. J Craniomaxillofac Surg 47(8):1190–1197. (PMID: 10.1016/j.jcms.2019.01.00531307850)
Koh CH, Chew MT (2004) Predictability of soft tissue profile changes following bimaxillary surgery in skeletal Class III Chinese patients. J Oral Maxillofac Surg 62:1505–1509. (PMID: 10.1016/j.joms.2004.04.02215573350)
Betts NJ, Vig KW, Vig P, Spalding P, Fonseca RJ (1993) Changes in the nasal and labial soft tissues after surgical repositioning of the maxilla. Int J Adult Orthodon Orthognath Surg 8(1):7–23. (PMID: 8509667)
Magnusson A, Bjerklin K, Kim H, Nilsson P, Marcusson A (2013) Three-dimensional computed tomographic analysis of changes to the external features of the nose after surgically assisted rapid maxillary expansion and orthodontic treatment: a prospective longitudinal study. Am J Orthod Dentofacial Orthop 144(3):404–413. (PMID: 10.1016/j.ajodo.2013.04.01323992813)
Ramieri GA, Nasi A, Dell’acqua A, Verze L (2008) Facial soft tissue changes after transverse palatal distraction in adult patients. Int J Oral Maxillofac Surg 37(9):810–818. (PMID: 10.1016/j.ijom.2008.05.00618583098)
Nada RM, van Loon B, Schols JG, Maal TJ, de Koning MJ, Mostafa YA et al (2013) Volumetric changes of the nose and nasal airway 2 years after tooth-borne and boneborne surgically assisted rapid maxillary expansion. Eur J Oral Sci 121(5):450–456. (PMID: 10.1111/eos.1206824028593)
Dragon CB, Shroff B, Carrico C, Stilianoudakis S, Strauss R, Lindauer SJ (2020) The effect of orthognathic surgery on facial recognition algorithm analysis. Am J Orthod Dentofacial Orthop 158(1):84–91. (PMID: 10.1016/j.ajodo.2019.11.01332448566)
Yang K, Wang C, Sarsenbayeva Z, Tag B, Dingler T, Wadley G et al (2021) Benchmarking commercial emotion detection systems using realistic distortions of facial image datasets. Vis Comput 37:1447–1466. (PMID: 10.1007/s00371-020-01881-x)
Hassaballah M, Aly S (2015) Face recognition: challenges, achievements and future directions. Iet Comput Vision 9(4):614–626. (PMID: 10.1049/iet-cvi.2014.0084)
Beham MP, Roomi SMM (2013) A review of face recognition methods. Int J Pattern Recogn Artific Intell 27(04):1356005. (PMID: 10.1142/S0218001413560053)
Lal M, Kumar K, Arain RH, Maitlo A, Ruk SA, Shaikh H (2018) Study of Face Recognition Techniques: A Survey. Int J Adv Comput Sci Apps 9(6):42–49.
Büyükçavuş MH, Findik Y, Baykul T (2020) Evaluation of Changes in Nasal Projection After Surgically Assisted Rapid Maxillary Expansion With 3dMD Face System. J Craniofac Surg 31(5):e462–e465. (PMID: 10.1097/SCS.000000000000643632310877)
Xi T, Laskowska M, van de Voort N, Ghaeminia H, Pawlak W, Bergé S et al (2017) The effects of surgically assisted rapid maxillary expansion (SARME) on the dental show and chin projection. J Craniomaxillofac Surg 45(11):1835–1841. (PMID: 10.1016/j.jcms.2017.08.02328935486)
Romano FL, Mestriner MA (2021) Skeletal posterior crossbite in patient with mandibular asymmetry:an alternative solution. Dental Press J Orthod 26(3):e21bbo3.
Jain AK, Li SZ (2011) Handbook of face recognition. Springer, New York.
Abate AF, Nappi M, Riccio D, Sabatino G (2007) 2D and 3D face recognition: a survey. Pattern Recognit Lett 28:1885–1906. (PMID: 10.1016/j.patrec.2006.12.018)
Devue C, Wride A, Grimshaw GM (2019) New insights on real-world human face recognition. J Exp Psychol Gen 148:994–1007. (PMID: 10.1037/xge000049330247062)
Contributed Indexing:
Keywords: Amazon Web Services; Application programming interfaces; Artificial intelligence; Azure; Face++
Local Abstract: [Publisher, German] EINLEITUNG: In dieser Studie sollte untersucht werden, ob die Weichteilveränderungen im Gesicht von Personen, die sich einer chirurgisch unterstützten schnellen Oberkiefererweiterung (SARME) unterzogen haben, von 3 verschiedenen bekannten Anwendungen zur biometrischen Gesichtserkennung erkannt werden. [Publisher, German] Zur Berechnung von Ähnlichkeitsscores wurden die prä- und postoperativen Fotos von 22 Patienten, die sich einer SARME-Behandlung unterzogen hatten, mit 3 namhaften Cloud-Computing-basierten Programmierschnittstellen (APIs) für die Gesichtserkennung untersucht: AWS Rekognition (Amazon Web Services, Seattle/WA, USA), Microsoft Azure Cognitive (Microsoft, Redmond/WA, USA) und Face++ (Megvii, Peking, China). Die Prä- und Post-SARME-Fotos der Patienten (entspannt, lächelnd, Profil und Halbprofil) wurden zur Berechnung der Ähnlichkeitsscores mithilfe der APIs verwendet. Mithilfe der zweiseitigen Friedman-Varianzanalyse und des Wilcoxon-Signed-Rank-Tests wurden die Ähnlichkeitswerte verglichen, die aus den Fotografien der verschiedenen Aspekte des Gesichts vor und nach der Operation mit den verschiedenen Programmen ermittelt wurden. Die Beziehung zwischen den Messungen auf den lateralen und posteroanterioren Kephalogrammen und den Ähnlichkeitswerten wurde anhand der Spearman-Rangkorrelation bewertet. [Publisher, German] Es wurde festgestellt, dass die Ähnlichkeitswerte mit dem Programm Face++ niedriger sind. Bei der Betrachtung der Fototypen wurde festgestellt, dass die Ähnlichkeitswerte bei den lächelnden Fotos höher waren. Es wurde ein statistisch signifikanter Unterschied in den Ähnlichkeitswerten (p < 0,05) zwischen den entspannten und lächelnden Fotos mit den verschiedenen Programmen festgestellt. Die Korrelation zwischen den kephalometrischen und posteroanterioren Messungen und den Ähnlichkeitswerten war nicht signifikant (p > 0,05). [Publisher, German] Die SARME-Therapie bewirkte eine signifikante Veränderung der Ähnlichkeitswerte, die mithilfe von 3 verschiedenen Gesichtserkennungsprogrammen berechnet wurden. Die höchsten Ähnlichkeitswerte wurden bei den lächelnden Fotos gefunden, die geringsten dagegen bei den Profilfotos.
Entry Date(s):
Date Created: 20230929 Date Completed: 20250421 Latest Revision: 20250421
Update Code:
20250422
DOI:
10.1007/s00056-023-00494-y
PMID:
37773456
Database:
MEDLINE

Weitere Informationen

Introduction: This study aimed to investigate whether the facial soft tissue changes of individuals who had undergone surgically assisted rapid maxillary expansion (SARME) would be detected by three different well-known facial biometric recognition applications.
Methods: To calculate similarity scores, the pre- and postsurgical photographs of 22 patients who had undergone SARME treatment were examined using three prominent cloud computing-based facial recognition application programming interfaces (APIs): AWS Rekognition (Amazon Web Services, Seattle, WA, USA), Microsoft Azure Cognitive (Microsoft, Redmond, WA, USA), and Face++ (Megvii, Beijing, China). The pre- and post-SARME photographs of the patients (relaxed, smiling, profile, and semiprofile) were used to calculate similarity scores using the APIs. Friedman's two-way analysis of variance and the Wilcoxon signed-rank test were used to compare the similarity scores obtained from the photographs of the different aspects of the face before and after surgery using the different programs. The relationship between measurements on lateral and posteroanterior cephalograms and the similarity scores was evaluated using the Spearman rank correlation.
Results: The similarity scores were found to be lower with the Face++ program. When looking at the photo types, it was observed that the similarity scores were higher in the smiling photos. A statistically significant difference in the similarity scores (P < 0.05) was found between the relaxed and smiling photographs using the different programs. The correlation between the cephalometric and posteroanterior measurements and the similarity scores was not significant (P > 0.05).
Conclusion: SARME treatment caused a significant change in the similarity scores calculated with the help of three different facial recognition programs. The highest similarity scores were found in the smiling photographs, whereas the lowest scores were found in the profile photographs.
(© 2023. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.)

Declarations. Conflict of interest: M.H. Buyukcavus, F. Aydogan Akgun, S. Solak, M.H.B. Ucar, Y. Fındık and T. Baykul declare that they have no competing interests. Ethical standards: This study was approved by the Clinical Research Ethics Committee of Suleyman Demirel University (approval number 10.06.2021/217). Consent to participate: Since this study was retrospective, all participants were contacted through their registered numbers and they all agreed to participate voluntarily and to read and sign the Informed Consent Agreement published by the Süleyman Demirel University Clinical Research Ethics Committee. Consent for publication: Written informed consent for publication was obtained from the patients in the study (Approval Number: 10.06.2021/217).