Treffer: Launching into clinical space with medspaCy: a new clinical text processing toolkit in Python.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. (PMID: 23564629)
J Am Med Inform Assoc. 2021 Mar 1;28(3):504-515. (PMID: 33319904)
Arch Pathol Lab Med. 2008 Oct;132(10):1608-16. (PMID: 18834219)
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. (PMID: 14681409)
J Biomed Inform. 2020 Sep;109:103526. (PMID: 32768446)
JMIR Med Inform. 2019 Apr 27;7(2):e12239. (PMID: 31066697)
JAMA Netw Open. 2021 Feb 1;4(2):e2037047. (PMID: 33566108)
Drug Saf. 2019 Jan;42(1):147-156. (PMID: 30649737)
Sci Data. 2016 May 24;3:160035. (PMID: 27219127)
BMC Med Inform Decis Mak. 2006 Jul 26;6:30. (PMID: 16872495)
J Biomed Semantics. 2019 Apr 11;10(1):6. (PMID: 30975223)
J Am Med Inform Assoc. 2016 Sep;23(5):1007-15. (PMID: 26911811)
J Biomed Inform. 2009 Oct;42(5):839-51. (PMID: 19435614)
AMIA Annu Symp Proc. 2008 Nov 06;:156-60. (PMID: 18999303)
Proc AMIA Symp. 2001;:17-21. (PMID: 11825149)
Acad Emerg Med. 2004 Nov;11(11):1170-6. (PMID: 15528581)
J Biomed Inform. 2011 Oct;44(5):728-37. (PMID: 21459155)
J Am Med Inform Assoc. 2017 Jul 1;24(4):841-844. (PMID: 28130331)
J Am Med Inform Assoc. 2020 Jan 1;27(1):3-12. (PMID: 31584655)
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13. (PMID: 20819853)
AMIA Annu Symp Proc. 2006;:364-8. (PMID: 17238364)
AMIA Annu Symp Proc. 2014 Nov 14;2014:589-98. (PMID: 25954364)
Weitere Informationen
Despite impressive success of machine learning algorithms in clinical natural language processing (cNLP), rule-based approaches still have a prominent role. In this paper, we introduce medspaCy, an extensible, open-source cNLP library based on spaCy framework that allows flexible integration of rule-based and machine learning-based algorithms adapted to clinical text. MedspaCy includes a variety of components that meet common cNLP needs such as context analysis and mapping to standard terminologies. By utilizing spaCy's clear and easy-to-use conventions, medspaCy enables development of custom pipelines that integrate easily with other spaCy-based modules. Our toolkit includes several core components and facilitates rapid development of pipelines for clinical text.
(©2021 AMIA - All rights reserved.)