Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Structural and developmental principles of neuropil assembly in C. elegans.

Title:
Structural and developmental principles of neuropil assembly in C. elegans.
Authors:
Moyle MW; Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA., Barnes KM; Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA., Kuchroo M; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA., Gonopolskiy A; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA., Duncan LH; Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA., Sengupta T; Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA., Shao L; Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA., Guo M; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA., Santella A; Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA., Christensen R; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA., Kumar A; Marine Biological Laboratory, Woods Hole, MA, USA., Wu Y; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA., Moon KR; Department of Mathematics and Statistics, Utah State University, Logan, UT, USA., Wolf G; Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada., Krishnaswamy S; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA., Bao Z; Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA., Shroff H; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.; Marine Biological Laboratory, Woods Hole, MA, USA., Mohler WA; Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA., Colón-Ramos DA; Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA. daniel.colon-ramos@yale.edu.; Marine Biological Laboratory, Woods Hole, MA, USA. daniel.colon-ramos@yale.edu.; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, Puerto Rico. daniel.colon-ramos@yale.edu.
Source:
Nature [Nature] 2021 Mar; Vol. 591 (7848), pp. 99-104. Date of Electronic Publication: 2021 Feb 24.
Publication Type:
Journal Article; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
References:
Maynard, D. M. Organization of neuropil. Am. Zool. 2, 79–96 (1962). (PMID: 10.1093/icb/2.1.79)
Schürmann, F. W. Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. Arthropod Struct. Dev. 45, 399–421 (2016). (PMID: 2755506510.1016/j.asd.2016.08.005)
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986). (PMID: 10.1098/rstb.1986.0056)
Soiza-Reilly, M. & Commons, K. G. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy. Front. Neural Circuits 8, 105 (2014). (PMID: 25206323414372310.3389/fncir.2014.00105)
Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743.e22 (2018). (PMID: 30033368606399510.1016/j.cell.2018.06.019)
Brugnone, N. et al. Coarse graining of data via inhomogeneous diffusion condensation. In 2019 IEEE International Conference on Big Data 2624–2633 (IEEE, 2019).
Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555–2573 (2014). (PMID: 25299154438661210.1038/nprot.2014.172)
Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013). (PMID: 24108093410532010.1038/nbt.2713)
Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 103, 2707–2712 (2006). (PMID: 1647703910.1073/pnas.0511111103)
Boyle, T. J., Bao, Z., Murray, J. I., Araya, C. L. & Waterston, R. H. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis. BMC Bioinformatics 7, 275 (2006). (PMID: 16740163150104610.1186/1471-2105-7-275)
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic-cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983). (PMID: 668460010.1016/0012-1606(83)90201-4)
Azulay, A., Itskovits, E. & Zaslaver, A. The C. elegans connectome consists of homogenous circuits with defined functional roles. PLoS Comput. Biol. 12, e1005021 (2016). (PMID: 27606684501583410.1371/journal.pcbi.1005021)
Chatterjee, N. & Sinha, S. Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Prog. Brain Res. 168, 145–153 (2008). (PMID: 1816639210.1016/S0079-6123(07)68012-1)
Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63–71 (2019). (PMID: 31270481688922610.1038/s41586-019-1352-7)
Towlson, E. K., Vertes, P. E., Ahnert, S. E., Schafer, W. R. & Bullmore, E. T. The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387 (2013). (PMID: 23575836410429210.1523/JNEUROSCI.3784-12.2013)
Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011). (PMID: 21304930303336210.1371/journal.pcbi.1001066)
Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550, 519–523 (2017). (PMID: 29045391571077610.1038/nature24056)
Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. Volumetric reconstruction of main Caenorhabditis elegans neuropil at two different time points. Preprint at https://doi.org/10.1101/485771 (2018).
Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature https://doi.org/10.1038/s41586-021-03284-x (2021).
Sabrin, K. M., Wei, Y., van den Heuvel, M. P. & Dovrolis, C. The hourglass organization of the Caenorhabditis elegans connectome. PLoS Comput. Biol. 16, e1007526 (2020). (PMID: 32027645702987510.1371/journal.pcbi.1007526)
Kennerdell, J. R., Fetter, R. D. & Bargmann, C. I. Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans. Development 136, 3801–3810 (2009). (PMID: 19855022286172110.1242/dev.038109)
Rapti, G., Li, C., Shan, A., Lu, Y. & Shaham, S. Glia initiate brain assembly through noncanonical Chimaerin–Furin axon guidance in C. elegans. Nat. Neurosci. 20, 1350–1360 (2017). (PMID: 28846083561485810.1038/nn.4630)
Wadsworth, W. G., Bhatt, H. & Hedgecock, E. M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996). (PMID: 856208810.1016/S0896-6273(00)80021-5)
Yoshimura, S., Murray, J. I., Lu, Y., Waterston, R. H. & Shaham, S. mls-2 and vab-3 control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development 135, 2263–2275 (2008). (PMID: 1850886210.1242/dev.019547)
Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. P10008, (2008).
Dasgupta, A., Hopcroft, J., Kannan, R. & Mitra, P. Spectral clustering by recursive partitioning. Lect. Notes Comput. Sci. 4168, 256–267 (2006). (PMID: 10.1007/11841036_25)
Kaufman, L. & Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, 2005).
Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019). (PMID: 31796933707314810.1038/s41587-019-0336-3)
Bargmann, C. I. Chemosensation in C. elegans. In WormBook (ed. The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.123.1 (2006).
Goodman, M. B. Mechanosensation. In WormBook (ed. The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.62.1 (2006).
Goodman, M. B. & Sengupta, P. How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics 212, 25–51 (2019). (PMID: 31053616649952910.1534/genetics.118.300241)
Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006). (PMID: 1672339810.1073/pnas.0601602103)
Millard, S. S. & Pecot, M. Y. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev. 13, 11 (2018). (PMID: 29875010599142710.1186/s13064-018-0106-9)
Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010). (PMID: 20399726287101210.1016/j.neuron.2010.01.018)
Baier, H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu. Rev. Cell Dev. Biol. 29, 385–416 (2013). (PMID: 2409908610.1146/annurev-cellbio-101011-155748)
Ware, R. W., Clark, D., Crossland, K. & Russell, R. L. Nerve ring of nematode Caenorhabditis elegans: sensory input and motor output. J. Comp. Neurol. 162, 71–110 (1975). (PMID: 10.1002/cne.901620106)
Ward, S., Thomson, N., White, J. G. & Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160, 313–337 (1975). (PMID: 111292710.1002/cne.901600305)
Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. (eds) C. elegans II 2nd edn (Cold Spring Harbor Lab. Press, 1997).
White, J. Clues to basis of exploratory behaviour of the C. elegans snout from head somatotropy. Phil. Trans. R. Soc. Lond. B 373, (2018).
Groh, J. M. Making Space: How The Brain Knows Where Things Are (Harvard Univ. Press, 2014).
Kaas, J. H. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44, 107–112 (1997). (PMID: 929219810.1016/S0361-9230(97)00094-4)
Sasakura, H. & Mori, I. Behavioral plasticity, learning, and memory in C. elegans. Curr. Opin. Neurobiol. 23, 92–99 (2013). (PMID: 2306329610.1016/j.conb.2012.09.005)
Chalfie, M. et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964 (1985). (PMID: 3981252656500810.1523/JNEUROSCI.05-04-00956.1985)
Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 3184–3191 (2005). (PMID: 1568940010.1073/pnas.0409009101)
Lockery, S. R. Neuroscience: A social hub for worms. Nature 458, 1124–1125 (2009). (PMID: 1940779210.1038/4581124a)
Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009). (PMID: 19349961276049510.1038/nature07886)
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, 633–640 (1983). (PMID: 658638010.1101/SQB.1983.048.01.067)
Wakabayashi, T., Kitagawa, I. & Shingai, R. Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neurosci. Res. 50, 103–111 (2004). (PMID: 1528850310.1016/j.neures.2004.06.005)
Duncan, L. H. et al. Isotropic light-sheet microscopy and automated cell lineage analyses to catalogue Caenorhabditis elegans embryogenesis with subcellular resolution. J. Vis. Exp. (2019).
Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. (2020).
Santella, A. et al. WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration. BMC Bioinformatics 16, 189 (2015). (PMID: 26051157445906310.1186/s12859-015-0627-8)
Ayala, R., Shu, T. & Tsai, L. H. Trekking across the brain: the journey of neuronal migration. Cell 128, 29–43 (2007). (PMID: 1721825310.1016/j.cell.2006.12.021)
Chelur, D. S. & Chalfie, M. Targeted cell killing by reconstituted caspases. Proc. Natl Acad. Sci. USA 104, 2283–2288 (2007). (PMID: 1728333310.1073/pnas.0610877104)
Brandes, U. et al. On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188 (2008). (PMID: 10.1109/TKDE.2007.190689)
Wicks, S. R. & Rankin, C. H. Integration of mechanosensory stimuli in Caenorhabditis elegans. J. Neurosci. 15, 2434–2444 (1995). (PMID: 7891178657810410.1523/JNEUROSCI.15-03-02434.1995)
Walthall, W. W. & Chalfie, M. Cell–cell interactions in the guidance of late-developing neurons in Caenorhabditis elegans. Science 239, 643–645 (1988). (PMID: 334084810.1126/science.3340848)
Kindt, K. S. et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat. Neurosci. 10, 568–577 (2007). (PMID: 1745013910.1038/nn1886)
Insley, P. & Shaham, S. Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement. PLoS ONE 13, e0194861 (2018). (PMID: 29590193587404010.1371/journal.pone.0194861)
Shah, P. K. et al. An in toto approach to dissecting cellular interactions in complex tissues. Dev. Cell 43, 530–540.e4 (2017). (PMID: 29161596572842910.1016/j.devcel.2017.10.021)
Lu, N., Yu, X., He, X. & Zhou, Z. Detecting apoptotic cells and monitoring their clearance in the nematode Caenorhabditis elegans. Methods Mol. Biol. 559, 357–370 (2009). (PMID: 19609769290192710.1007/978-1-60327-017-5_25)
Grant Information:
R24 OD016474 United States OD NIH HHS; OD010943 United States NH NIH HHS; P40 OD010440 United States OD NIH HHS; UL1 TR001863 United States TR NCATS NIH HHS; R01 NS076558 United States NS NINDS NIH HHS; P30 CA008748 United States CA NCI NIH HHS; R01 GM135929 United States GM NIGMS NIH HHS; F32 NS098616 United States NS NINDS NIH HHS; R01 GM097576 United States GM NIGMS NIH HHS; DP1 NS111778 United States NS NINDS NIH HHS
Entry Date(s):
Date Created: 20210225 Date Completed: 20210408 Latest Revision: 20230129
Update Code:
20250114
PubMed Central ID:
PMC8385650
DOI:
10.1038/s41586-020-03169-5
PMID:
33627875
Database:
MEDLINE

Weitere Informationen

Neuropil is a fundamental form of tissue organization within the brain <sup>1</sup> , in which densely packed neurons synaptically interconnect into precise circuit architecture <sup>2,3</sup> . However, the structural and developmental principles that govern this nanoscale precision remain largely unknown <sup>4,5</sup> . Here we use an iterative data coarse-graining algorithm termed 'diffusion condensation' <sup>6</sup> to identify nested circuit structures within the Caenorhabditis elegans neuropil, which is known as the nerve ring. We show that the nerve ring neuropil is largely organized into four strata that are composed of related behavioural circuits. The stratified architecture of the neuropil is a geometrical representation of the functional segregation of sensory information and motor outputs, with specific sensory organs and muscle quadrants mapping onto particular neuropil strata. We identify groups of neurons with unique morphologies that integrate information across strata and that create neural structures that cage the strata within the nerve ring. We use high resolution light-sheet microscopy <sup>7,8</sup> coupled with lineage-tracing and cell-tracking algorithms <sup>9,10</sup> to resolve the developmental sequence and reveal principles of cell position, migration and outgrowth that guide stratified neuropil organization. Our results uncover conserved structural design principles that underlie the architecture and function of the nerve ring neuropil, and reveal a temporal progression of outgrowth-based on pioneer neurons-that guides the hierarchical development of the layered neuropil. Our findings provide a systematic blueprint for using structural and developmental approaches to understand neuropil organization within the brain.