Treffer: Structural and developmental principles of neuropil assembly in C. elegans.
Original Publication: London, Macmillan Journals ltd.
Schürmann, F. W. Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. Arthropod Struct. Dev. 45, 399–421 (2016). (PMID: 2755506510.1016/j.asd.2016.08.005)
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986). (PMID: 10.1098/rstb.1986.0056)
Soiza-Reilly, M. & Commons, K. G. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy. Front. Neural Circuits 8, 105 (2014). (PMID: 25206323414372310.3389/fncir.2014.00105)
Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743.e22 (2018). (PMID: 30033368606399510.1016/j.cell.2018.06.019)
Brugnone, N. et al. Coarse graining of data via inhomogeneous diffusion condensation. In 2019 IEEE International Conference on Big Data 2624–2633 (IEEE, 2019).
Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555–2573 (2014). (PMID: 25299154438661210.1038/nprot.2014.172)
Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013). (PMID: 24108093410532010.1038/nbt.2713)
Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 103, 2707–2712 (2006). (PMID: 1647703910.1073/pnas.0511111103)
Boyle, T. J., Bao, Z., Murray, J. I., Araya, C. L. & Waterston, R. H. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis. BMC Bioinformatics 7, 275 (2006). (PMID: 16740163150104610.1186/1471-2105-7-275)
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic-cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983). (PMID: 668460010.1016/0012-1606(83)90201-4)
Azulay, A., Itskovits, E. & Zaslaver, A. The C. elegans connectome consists of homogenous circuits with defined functional roles. PLoS Comput. Biol. 12, e1005021 (2016). (PMID: 27606684501583410.1371/journal.pcbi.1005021)
Chatterjee, N. & Sinha, S. Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Prog. Brain Res. 168, 145–153 (2008). (PMID: 1816639210.1016/S0079-6123(07)68012-1)
Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63–71 (2019). (PMID: 31270481688922610.1038/s41586-019-1352-7)
Towlson, E. K., Vertes, P. E., Ahnert, S. E., Schafer, W. R. & Bullmore, E. T. The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387 (2013). (PMID: 23575836410429210.1523/JNEUROSCI.3784-12.2013)
Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011). (PMID: 21304930303336210.1371/journal.pcbi.1001066)
Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550, 519–523 (2017). (PMID: 29045391571077610.1038/nature24056)
Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. Volumetric reconstruction of main Caenorhabditis elegans neuropil at two different time points. Preprint at https://doi.org/10.1101/485771 (2018).
Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature https://doi.org/10.1038/s41586-021-03284-x (2021).
Sabrin, K. M., Wei, Y., van den Heuvel, M. P. & Dovrolis, C. The hourglass organization of the Caenorhabditis elegans connectome. PLoS Comput. Biol. 16, e1007526 (2020). (PMID: 32027645702987510.1371/journal.pcbi.1007526)
Kennerdell, J. R., Fetter, R. D. & Bargmann, C. I. Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans. Development 136, 3801–3810 (2009). (PMID: 19855022286172110.1242/dev.038109)
Rapti, G., Li, C., Shan, A., Lu, Y. & Shaham, S. Glia initiate brain assembly through noncanonical Chimaerin–Furin axon guidance in C. elegans. Nat. Neurosci. 20, 1350–1360 (2017). (PMID: 28846083561485810.1038/nn.4630)
Wadsworth, W. G., Bhatt, H. & Hedgecock, E. M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996). (PMID: 856208810.1016/S0896-6273(00)80021-5)
Yoshimura, S., Murray, J. I., Lu, Y., Waterston, R. H. & Shaham, S. mls-2 and vab-3 control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development 135, 2263–2275 (2008). (PMID: 1850886210.1242/dev.019547)
Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. P10008, (2008).
Dasgupta, A., Hopcroft, J., Kannan, R. & Mitra, P. Spectral clustering by recursive partitioning. Lect. Notes Comput. Sci. 4168, 256–267 (2006). (PMID: 10.1007/11841036_25)
Kaufman, L. & Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, 2005).
Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019). (PMID: 31796933707314810.1038/s41587-019-0336-3)
Bargmann, C. I. Chemosensation in C. elegans. In WormBook (ed. The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.123.1 (2006).
Goodman, M. B. Mechanosensation. In WormBook (ed. The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.62.1 (2006).
Goodman, M. B. & Sengupta, P. How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics 212, 25–51 (2019). (PMID: 31053616649952910.1534/genetics.118.300241)
Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006). (PMID: 1672339810.1073/pnas.0601602103)
Millard, S. S. & Pecot, M. Y. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev. 13, 11 (2018). (PMID: 29875010599142710.1186/s13064-018-0106-9)
Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010). (PMID: 20399726287101210.1016/j.neuron.2010.01.018)
Baier, H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu. Rev. Cell Dev. Biol. 29, 385–416 (2013). (PMID: 2409908610.1146/annurev-cellbio-101011-155748)
Ware, R. W., Clark, D., Crossland, K. & Russell, R. L. Nerve ring of nematode Caenorhabditis elegans: sensory input and motor output. J. Comp. Neurol. 162, 71–110 (1975). (PMID: 10.1002/cne.901620106)
Ward, S., Thomson, N., White, J. G. & Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160, 313–337 (1975). (PMID: 111292710.1002/cne.901600305)
Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. (eds) C. elegans II 2nd edn (Cold Spring Harbor Lab. Press, 1997).
White, J. Clues to basis of exploratory behaviour of the C. elegans snout from head somatotropy. Phil. Trans. R. Soc. Lond. B 373, (2018).
Groh, J. M. Making Space: How The Brain Knows Where Things Are (Harvard Univ. Press, 2014).
Kaas, J. H. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44, 107–112 (1997). (PMID: 929219810.1016/S0361-9230(97)00094-4)
Sasakura, H. & Mori, I. Behavioral plasticity, learning, and memory in C. elegans. Curr. Opin. Neurobiol. 23, 92–99 (2013). (PMID: 2306329610.1016/j.conb.2012.09.005)
Chalfie, M. et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964 (1985). (PMID: 3981252656500810.1523/JNEUROSCI.05-04-00956.1985)
Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 3184–3191 (2005). (PMID: 1568940010.1073/pnas.0409009101)
Lockery, S. R. Neuroscience: A social hub for worms. Nature 458, 1124–1125 (2009). (PMID: 1940779210.1038/4581124a)
Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009). (PMID: 19349961276049510.1038/nature07886)
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, 633–640 (1983). (PMID: 658638010.1101/SQB.1983.048.01.067)
Wakabayashi, T., Kitagawa, I. & Shingai, R. Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neurosci. Res. 50, 103–111 (2004). (PMID: 1528850310.1016/j.neures.2004.06.005)
Duncan, L. H. et al. Isotropic light-sheet microscopy and automated cell lineage analyses to catalogue Caenorhabditis elegans embryogenesis with subcellular resolution. J. Vis. Exp. (2019).
Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. (2020).
Santella, A. et al. WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration. BMC Bioinformatics 16, 189 (2015). (PMID: 26051157445906310.1186/s12859-015-0627-8)
Ayala, R., Shu, T. & Tsai, L. H. Trekking across the brain: the journey of neuronal migration. Cell 128, 29–43 (2007). (PMID: 1721825310.1016/j.cell.2006.12.021)
Chelur, D. S. & Chalfie, M. Targeted cell killing by reconstituted caspases. Proc. Natl Acad. Sci. USA 104, 2283–2288 (2007). (PMID: 1728333310.1073/pnas.0610877104)
Brandes, U. et al. On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188 (2008). (PMID: 10.1109/TKDE.2007.190689)
Wicks, S. R. & Rankin, C. H. Integration of mechanosensory stimuli in Caenorhabditis elegans. J. Neurosci. 15, 2434–2444 (1995). (PMID: 7891178657810410.1523/JNEUROSCI.15-03-02434.1995)
Walthall, W. W. & Chalfie, M. Cell–cell interactions in the guidance of late-developing neurons in Caenorhabditis elegans. Science 239, 643–645 (1988). (PMID: 334084810.1126/science.3340848)
Kindt, K. S. et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat. Neurosci. 10, 568–577 (2007). (PMID: 1745013910.1038/nn1886)
Insley, P. & Shaham, S. Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement. PLoS ONE 13, e0194861 (2018). (PMID: 29590193587404010.1371/journal.pone.0194861)
Shah, P. K. et al. An in toto approach to dissecting cellular interactions in complex tissues. Dev. Cell 43, 530–540.e4 (2017). (PMID: 29161596572842910.1016/j.devcel.2017.10.021)
Lu, N., Yu, X., He, X. & Zhou, Z. Detecting apoptotic cells and monitoring their clearance in the nematode Caenorhabditis elegans. Methods Mol. Biol. 559, 357–370 (2009). (PMID: 19609769290192710.1007/978-1-60327-017-5_25)
Weitere Informationen
Neuropil is a fundamental form of tissue organization within the brain <sup>1</sup> , in which densely packed neurons synaptically interconnect into precise circuit architecture <sup>2,3</sup> . However, the structural and developmental principles that govern this nanoscale precision remain largely unknown <sup>4,5</sup> . Here we use an iterative data coarse-graining algorithm termed 'diffusion condensation' <sup>6</sup> to identify nested circuit structures within the Caenorhabditis elegans neuropil, which is known as the nerve ring. We show that the nerve ring neuropil is largely organized into four strata that are composed of related behavioural circuits. The stratified architecture of the neuropil is a geometrical representation of the functional segregation of sensory information and motor outputs, with specific sensory organs and muscle quadrants mapping onto particular neuropil strata. We identify groups of neurons with unique morphologies that integrate information across strata and that create neural structures that cage the strata within the nerve ring. We use high resolution light-sheet microscopy <sup>7,8</sup> coupled with lineage-tracing and cell-tracking algorithms <sup>9,10</sup> to resolve the developmental sequence and reveal principles of cell position, migration and outgrowth that guide stratified neuropil organization. Our results uncover conserved structural design principles that underlie the architecture and function of the nerve ring neuropil, and reveal a temporal progression of outgrowth-based on pioneer neurons-that guides the hierarchical development of the layered neuropil. Our findings provide a systematic blueprint for using structural and developmental approaches to understand neuropil organization within the brain.