Treffer: Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying.
Original Publication: [Berlin] : Springer International, c1987-
Br J Surg. 2006 Aug;93(8):921-8. (PMID: 16845692)
Ann Surg. 2003 Jul;238(1):67-72. (PMID: 12832967)
Dis Colon Rectum. 2012 Dec;55(12):1300-10. (PMID: 23135590)
Int J Comput Assist Radiol Surg. 2016 Jun;11(6):881-8. (PMID: 27025604)
Langenbecks Arch Surg. 2016 Sep;401(6):893-901. (PMID: 27055853)
Arch Surg. 2011 Mar;146(3):348-56. (PMID: 21079109)
Am J Surg. 2007 Jun;193(6):774-83. (PMID: 17512295)
Surg Endosc. 2018 Jun;32(6):2994-2999. (PMID: 29340824)
Surg Endosc. 2018 Feb;32(2):553-568. (PMID: 29075965)
Sensors (Basel). 2016 Aug 03;16(8):. (PMID: 27527167)
J Surg Educ. 2016 Mar-Apr;73(2):258-63. (PMID: 26597729)
J Pediatr Surg. 2014 Jul;49(7):1138-41. (PMID: 24952803)
JAMA. 2013 Apr 3;309(13):1351-2. (PMID: 23549579)
Health Inf Sci Syst. 2014 Feb 07;2:3. (PMID: 25825667)
Stud Health Technol Inform. 2001;81:417-23. (PMID: 11317782)
Br J Surg. 1997 Feb;84(2):273-8. (PMID: 9052454)
Surg Endosc. 2017 May;31(5):2155-2165. (PMID: 27604368)
Int J Med Robot. 2018 Feb;14(1):null. (PMID: 28660725)
Am J Surg. 2005 Jul;190(1):107-13. (PMID: 15972181)
Surg Endosc. 2011 Feb;25(2):356-66. (PMID: 20607563)
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):420-8. (PMID: 17354918)
Chirurg. 2016 Dec;87(12):1033-1038. (PMID: 27778059)
Ann Surg. 2012 Dec;256(6):934-45. (PMID: 23108128)
IEEE Trans Biomed Eng. 2017 Sep;64(9):2263-2275. (PMID: 28113295)
Minim Invasive Ther Allied Technol. 2017 Oct;26(5):253-261. (PMID: 28349758)
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:615-621. (PMID: 28813888)
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):102-9. (PMID: 18051049)
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):295-302. (PMID: 20879412)
IEEE Trans Biomed Eng. 2001 May;48(5):579-91. (PMID: 11341532)
Weitere Informationen
Introduction: The most common way of assessing surgical performance is by expert raters to view a surgical task and rate a trainee's performance. However, there is huge potential for automated skill assessment and workflow analysis using modern technology. The aim of the present study was to evaluate machine learning (ML) algorithms using the data of a Myo armband as a sensor device for skills level assessment and phase detection in laparoscopic training.
Materials and Methods: Participants of three experience levels in laparoscopy performed a suturing and knot tying task on silicon models. Experts rated performance using Objective Structured Assessment of Surgical Skills (OSATS). Participants wore Myo armbands (Thalmic Labs™, Ontario, Canada) to record acceleration, angular velocity, orientation, and Euler orientation. ML algorithms (decision forest, neural networks, boosted decision tree) were compared for skill level assessment and phase detection.
Results: 28 participants (8 beginner, 10 intermediate, 10 expert) were included, and 99 knots were available for analysis. A neural network regression model had the lowest mean absolute error in predicting OSATS score (3.7 ± 0.6 points, r <sup>2</sup> = 0.03 ± 0.81; OSATS min.-max.: 4-37 points). An ensemble of binary-class neural networks yielded the highest accuracy in predicting skill level (beginners: 82.2% correctly identified, intermediate: 3.0%, experts: 79.5%) whereas standard statistical analysis failed to discriminate between skill levels. Phase detection on raw data showed the best results with a multi-class decision jungle (average 16% correctly identified), but improved to 43% average accuracy with two-class boosted decision trees after Dynamic time warping (DTW) application.
Conclusion: Modern machine learning algorithms aid in interpreting complex surgical motion data, even when standard analysis fails. Dynamic time warping offers the potential to process and compare surgical motion data in order to allow automated surgical workflow detection. However, further research is needed to interpret and standardize available data and improve sensor accuracy.