Treffer: A temporal precedence based clustering method for gene expression microarray data.
Proc Natl Acad Sci U S A. 2001 May 8;98(10):5631-6. (PMID: 11344303)
Bioinformatics. 2003 May 22;19(8):905-12. (PMID: 12761051)
Genet Res. 2001 Apr;77(2):123-8. (PMID: 11355567)
Nucleic Acids Res. 2002 Jan 1;30(1):303-5. (PMID: 11752321)
Mol Biol Cell. 2000 Dec;11(12):4241-57. (PMID: 11102521)
Bioinformatics. 2002 Mar;18(3):413-22. (PMID: 11934740)
Bioinformatics. 2008 Feb 15;24(4):561-8. (PMID: 18204062)
Nucleic Acids Res. 2004 Jan 22;32(2):447-55. (PMID: 14739237)
Genome Biol. 2002;3(2):RESEARCH0009. (PMID: 11864371)
Bioinformatics. 2005 Apr 1;21(7):1069-77. (PMID: 15513997)
IEEE/ACM Trans Comput Biol Bioinform. 2005 Jul-Sep;2(3):179-93. (PMID: 17044182)
Nature. 1998 Jun 4;393(6684):440-2. (PMID: 9623998)
Nat Biotechnol. 2005 Dec;23(12):1499-501. (PMID: 16333293)
J Comput Biol. 2003;10(3-4):341-56. (PMID: 12935332)
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 2):056221. (PMID: 15600742)
Science. 2000 Dec 15;290(5499):2110-3. (PMID: 11118138)
Bioinformatics. 2005 Feb 15;21(4):509-16. (PMID: 15374868)
Nat Rev Genet. 2001 Jun;2(6):418-27. (PMID: 11389458)
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4372-6. (PMID: 12676999)
PLoS Comput Biol. 2008 May 30;4(5):e1000087. (PMID: 18516243)
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2981-6. (PMID: 14973197)
Plant J. 2007 Dec;52(6):1140-53. (PMID: 17971039)
Bioinformatics. 2006 Jul 15;22(14):1745-52. (PMID: 16675467)
Bioinformatics. 2003 Nov 22;19(17):2321-2. (PMID: 14630665)
Bioinformatics. 2008 Apr 1;24(7):1029-32; author reply 1033. (PMID: 18304931)
Nat Genet. 2000 May;25(1):25-9. (PMID: 10802651)
BMC Bioinformatics. 2008 Oct 06;9:415. (PMID: 18837969)
Bioinformatics. 2003;19 Suppl 1:i255-63. (PMID: 12855468)
Bioinformatics. 2005 Mar;21(6):754-64. (PMID: 15479708)
Bioinformatics. 2004 Jan 1;20(1):5-20. (PMID: 14693803)
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066216. (PMID: 16906955)
Appl Bioinformatics. 2003;2(1):35-45. (PMID: 15130832)
Annu Rev Biomed Eng. 2007;9:205-28. (PMID: 17341157)
Science. 2002 Aug 30;297(5586):1551-5. (PMID: 12202830)
Genome Res. 2003 Nov;13(11):2498-504. (PMID: 14597658)
Bioinformatics. 2007 Feb 15;23(4):442-9. (PMID: 17158516)
Science. 1999 Oct 15;286(5439):509-12. (PMID: 10521342)
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9121-6. (PMID: 12082179)
PLoS One. 2009;4(4):e5098. (PMID: 22745650)
Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8. (PMID: 9843981)
Bioinformatics. 2005 Aug 15;21(16):3448-9. (PMID: 15972284)
Nat Genet. 1999 Jul;22(3):281-5. (PMID: 10391217)
Bioinformatics. 2004 Mar 22;20(5):742-9. (PMID: 14751991)
Nature. 2001 May 3;411(6833):41-2. (PMID: 11333967)
BMC Bioinformatics. 2006 Apr 05;7:191. (PMID: 16597342)
BMC Bioinformatics. 2008 Jun 18;9:287. (PMID: 18564420)
BMC Bioinformatics. 2003 Jan 13;4:2. (PMID: 12525261)
Weitere Informationen
Background: Time-course microarray experiments can produce useful data which can help in understanding the underlying dynamics of the system. Clustering is an important stage in microarray data analysis where the data is grouped together according to certain characteristics. The majority of clustering techniques are based on distance or visual similarity measures which may not be suitable for clustering of temporal microarray data where the sequential nature of time is important. We present a Granger causality based technique to cluster temporal microarray gene expression data, which measures the interdependence between two time-series by statistically testing if one time-series can be used for forecasting the other time-series or not.
Results: A gene-association matrix is constructed by testing temporal relationships between pairs of genes using the Granger causality test. The association matrix is further analyzed using a graph-theoretic technique to detect highly connected components representing interesting biological modules. We test our approach on synthesized datasets and real biological datasets obtained for Arabidopsis thaliana. We show the effectiveness of our approach by analyzing the results using the existing biological literature. We also report interesting structural properties of the association network commonly desired in any biological system.
Conclusions: Our experiments on synthesized and real microarray datasets show that our approach produces encouraging results. The method is simple in implementation and is statistically traceable at each step. The method can produce sets of functionally related genes which can be further used for reverse-engineering of gene circuits.