Treffer: EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
J Bacteriol. 2007 Apr;189(7):2720-33. (PMID: 17259312)
J Biotechnol. 2009 Mar 10;140(1-2):3-12. (PMID: 19297685)
Bioinformatics. 2004 Feb 12;20(3):307-15. (PMID: 14960456)
J Biotechnol. 2007 Apr 30;129(2):191-211. (PMID: 17227685)
BMC Bioinformatics. 2005 Apr 18;6:101. (PMID: 15836795)
Science. 1995 Oct 20;270(5235):467-70. (PMID: 7569999)
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W710-6. (PMID: 15980569)
Bioinformatics. 2001 Jun;17(6):509-19. (PMID: 11395427)
Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90. (PMID: 18940857)
Nucleic Acids Res. 2003 Apr 15;31(8):2187-95. (PMID: 12682369)
Bioinformatics. 2008 Dec 1;24(23):2726-32. (PMID: 18765459)
Plant Physiol. 2005 Apr;137(4):1283-301. (PMID: 15778460)
Phytochemistry. 2007 Jan;68(1):8-18. (PMID: 17081575)
Genome Biol. 2002 Jul 15;3(8):SOFTWARE0003. (PMID: 12186655)
Bioinformatics. 2006 Apr 1;22(7):866-73. (PMID: 16428806)
BMC Syst Biol. 2007 Nov 22;1:55. (PMID: 18034885)
J Biotechnol. 2003 Dec 19;106(2-3):157-67. (PMID: 14651858)
Nucleic Acids Res. 2002 Feb 15;30(4):e15. (PMID: 11842121)
J Biotechnol. 2003 Dec 19;106(2-3):255-68. (PMID: 14651866)
Appl Environ Microbiol. 2005 May;71(5):2391-402. (PMID: 15870326)
Nucleic Acids Res. 2003 Jan 1;31(1):68-71. (PMID: 12519949)
J Bacteriol. 2007 Jul;189(13):4696-707. (PMID: 17483229)
Genome Biol. 2002 Aug 23;3(9):RESEARCH0046. (PMID: 12225585)
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W498-503. (PMID: 16845058)
J Biotechnol. 2003 Dec 19;106(2-3):135-46. (PMID: 14651856)
Biotechniques. 1995 Sep;19(3):442-7. (PMID: 7495558)
Nat Methods. 2005 May;2(5):351-6. (PMID: 15846362)
Genome Biol. 2004;5(10):R80. (PMID: 15461798)
Trends Genet. 2006 Feb;22(2):84-9. (PMID: 16377025)
BMC Bioinformatics. 2007 Jun 02;8:179. (PMID: 17543125)
BMC Genomics. 2006 Feb 14;7:24. (PMID: 16478536)
Nat Genet. 2001 Dec;29(4):365-71. (PMID: 11726920)
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21. (PMID: 11309499)
BMC Genomics. 2006 Feb 09;7:21. (PMID: 16469103)
J Biotechnol. 2008 Jun 30;135(3):309-17. (PMID: 18538881)
Stat Appl Genet Mol Biol. 2004;3:Article3. (PMID: 16646809)
Phytochemistry. 2007 Jan;68(1):19-32. (PMID: 17081576)
J Biotechnol. 2006 Dec 15;127(1):21-33. (PMID: 16890319)
Nature. 2006 Dec 14;444(7121):933-6. (PMID: 17167486)
Methods. 2003 Dec;31(4):265-73. (PMID: 14597310)
Weitere Informationen
Background: Understanding transcriptional regulation by genome-wide microarray studies can contribute to unravel complex relationships between genes. Attempts to standardize the annotation of microarray data include the Minimum Information About a Microarray Experiment (MIAME) recommendations, the MAGE-ML format for data interchange, and the use of controlled vocabularies or ontologies. The existing software systems for microarray data analysis implement the mentioned standards only partially and are often hard to use and extend. Integration of genomic annotation data and other sources of external knowledge using open standards is therefore a key requirement for future integrated analysis systems.
Results: The EMMA 2 software has been designed to resolve shortcomings with respect to full MAGE-ML and ontology support and makes use of modern data integration techniques. We present a software system that features comprehensive data analysis functions for spotted arrays, and for the most common synthesized oligo arrays such as Agilent, Affymetrix and NimbleGen. The system is based on the full MAGE object model. Analysis functionality is based on R and Bioconductor packages and can make use of a compute cluster for distributed services.
Conclusion: Our model-driven approach for automatically implementing a full MAGE object model provides high flexibility and compatibility. Data integration via SOAP-based web-services is advantageous in a distributed client-server environment as the collaborative analysis of microarray data is gaining more and more relevance in international research consortia. The adequacy of the EMMA 2 software design and implementation has been proven by its application in many distributed functional genomics projects. Its scalability makes the current architecture suited for extensions towards future transcriptomics methods based on high-throughput sequencing approaches which have much higher computational requirements than microarrays.