ISO-690 (author-date, English)

YAO, Shaowen, WANG, Sunkanghong, ZHANG, Tai, WEI, Lijun und LIU, Qiang, 2025. A combinatorial Benders decomposition approach for the constrained two-dimensional guillotine cutting problem with defects. International Journal of Production Research. 1 Dezember 2025. Vol. 63, no. 23, p. 8593-8610. DOI 10.1080/00207543.2025.2512228.

Elsevier - Harvard (with titles)

Yao, S., Wang, S., Zhang, T., Wei, L., Liu, Q., 2025. A combinatorial Benders decomposition approach for the constrained two-dimensional guillotine cutting problem with defects. International Journal of Production Research 63, 8593-8610. https://doi.org/10.1080/00207543.2025.2512228

American Psychological Association 7th edition

Yao, S., Wang, S., Zhang, T., Wei, L., & Liu, Q. (2025). A combinatorial Benders decomposition approach for the constrained two-dimensional guillotine cutting problem with defects. International Journal of Production Research, 63(23), 8593-8610. https://doi.org/10.1080/00207543.2025.2512228

Springer - Basic (author-date)

Yao S, Wang S, Zhang T, Wei L, Liu Q (2025) A combinatorial Benders decomposition approach for the constrained two-dimensional guillotine cutting problem with defects.. International Journal of Production Research 63:8593-8610. https://doi.org/10.1080/00207543.2025.2512228

Juristische Zitierweise (Stüber) (Deutsch)

Yao, Shaowen/ Wang, Sunkanghong/ Zhang, Tai/ Wei, Lijun/ Liu, Qiang, A combinatorial Benders decomposition approach for the constrained two-dimensional guillotine cutting problem with defects., International Journal of Production Research 2025, 8593-8610.

Bitte prüfen Sie die Zitate auf Korrektheit, bevor Sie diese in Ihre Arbeit einfügen.