ISO-690 (author-date, English)

HOEFLER, Torsten, BONOTO, Tommaso, DE SENSI, Daniele, DI GIROLAMO, Salvatore, LI, Shigang, HEDDES, Marco, GOEL, Deepak, CASTRO, Miguel und SCOTT, Steve, 2024. Hamming Mesh: A Network Topology for Large-Scale Deep Learning. Communications of the ACM. 1 Dezember 2024. Vol. 67, no. 12, p. 97-105. DOI 10.1145/3623490.

Elsevier - Harvard (with titles)

Hoefler, T., Bonoto, T., De Sensi, D., Di Girolamo, S., Li, S., Heddes, M., Goel, D., Castro, M., Scott, S., 2024. Hamming Mesh: A Network Topology for Large-Scale Deep Learning. Communications of the ACM 67, 97-105. https://doi.org/10.1145/3623490

American Psychological Association 7th edition

Hoefler, T., Bonoto, T., De Sensi, D., Di Girolamo, S., Li, S., Heddes, M., Goel, D., Castro, M., & Scott, S. (2024). Hamming Mesh: A Network Topology for Large-Scale Deep Learning. Communications of the ACM, 67(12), 97-105. https://doi.org/10.1145/3623490

Springer - Basic (author-date)

Hoefler T, Bonoto T, De Sensi D, Di Girolamo S, Li S, Heddes M, Goel D, Castro M, Scott S (2024) Hamming Mesh: A Network Topology for Large-Scale Deep Learning.. Communications of the ACM 67:97-105. https://doi.org/10.1145/3623490

Juristische Zitierweise (Stüber) (Deutsch)

Hoefler, Torsten/ Bonoto, Tommaso/ De Sensi, Daniele/ Di Girolamo, Salvatore/ Li, Shigang/ Heddes, Marco/ Goel, Deepak/ Castro, Miguel/ Scott, Steve, Hamming Mesh: A Network Topology for Large-Scale Deep Learning., Communications of the ACM 2024, 97-105.

Bitte prüfen Sie die Zitate auf Korrektheit, bevor Sie diese in Ihre Arbeit einfügen.