ISO-690 (author-date, English)

JABR, Ismael, SALMAN, Yanal, SHQAIR, Motasem und HAWASH, Amjad, 2025. Penetration Testing and Attack Automation Simulation: Deep Reinforcement Learning Approach. An-Najah University Journal for Research, A: Natural Sciences. 1 Februar 2025. Vol. 39, no. 1, p. 7-14. DOI 10.35552/anujr.a.39.1.2231.

Elsevier - Harvard (with titles)

Jabr, I., Salman, Y., Shqair, M., Hawash, A., 2025. Penetration Testing and Attack Automation Simulation: Deep Reinforcement Learning Approach. An-Najah University Journal for Research, A: Natural Sciences 39, 7-14. https://doi.org/10.35552/anujr.a.39.1.2231

American Psychological Association 7th edition

Jabr, I., Salman, Y., Shqair, M., & Hawash, A. (2025). Penetration Testing and Attack Automation Simulation: Deep Reinforcement Learning Approach. An-Najah University Journal for Research, A: Natural Sciences, 39(1), 7-14. https://doi.org/10.35552/anujr.a.39.1.2231

Springer - Basic (author-date)

Jabr I, Salman Y, Shqair M, Hawash A (2025) Penetration Testing and Attack Automation Simulation: Deep Reinforcement Learning Approach.. An-Najah University Journal for Research, A: Natural Sciences 39:7-14. https://doi.org/10.35552/anujr.a.39.1.2231

Juristische Zitierweise (Stüber) (Deutsch)

Jabr, Ismael/ Salman, Yanal/ Shqair, Motasem/ Hawash, Amjad, Penetration Testing and Attack Automation Simulation: Deep Reinforcement Learning Approach., An-Najah University Journal for Research, A: Natural Sciences 2025, 7-14.

Bitte prüfen Sie die Zitate auf Korrektheit, bevor Sie diese in Ihre Arbeit einfügen.