Treffer: MIGS: A Modular Edge Gateway with Instance-Based Isolation for Heterogeneous Industrial IoT Interoperability.
Weitere Informationen
The exponential proliferation of the Internet of Things (IoT) has catalyzed a paradigm shift in industrial automation and smart city infrastructure. However, this rapid expansion has engendered significant heterogeneity in communication protocols, creating critical barriers to seamless data integration and interoperability. Conventional gateway solutions frequently exhibit limited flexibility in supporting diverse protocol stacks simultaneously and often lack granular user controllability. To mitigate these deficiencies, this paper proposes a novel, modular IoT gateway architecture, designated as MIGS (Modular IoT Gateway System). The proposed architecture comprises four distinct components: a Management Component, a Southbound Component, a Northbound Component, and a Cache Component. Specifically, the Southbound Component employs instance-based isolation and independent task threading to manage heterogeneous field devices utilizing protocols such as Modbus, MQTT, and OPC UA. The Northbound Component facilitates reliable bidirectional data transmission with cloud platforms. A dedicated Cache Component is integrated to decouple data acquisition from transmission, ensuring data integrity during network latency. Furthermore, a web-based Control Service Module affords comprehensive runtime management. We explicate the data transmission methodology and formulate a theoretical latency model to quantify the impact of the Python Global Interpreter Lock (GIL) and serialization overhead. Functional validation and theoretical analysis confirm the system's efficacy in concurrent multi-protocol communication, robust data forwarding, and operational flexibility. The MIGS framework significantly enhances interoperability within heterogeneous IoT environments, offering a scalable solution for next-generation industrial applications. [ABSTRACT FROM AUTHOR]