Treffer: Blockchain-Based Batch Authentication and Symmetric Group Key Agreement in MEC Environments.
Weitere Informationen
To address the high computational and communication overheads and the limited edge security found in many existing batch verification methods for Mobile Edge Computing (MEC), this paper presents a blockchain-based batch authentication and symmetric group key agreement protocol. A core feature of this protocol is the establishment of a shared symmetric key among all authenticated participants. This symmetry in key distribution is fundamental for enabling secure and efficient broadcast or multicast communication within the MEC group. The protocol introduces a chameleon hash function built on elliptic curves, allowing smart mobile devices (SMDs) to generate lightweight signatures. The edge server (ES) then performs efficient large-scale batch authentication using an aggregate signature technique. Considering the need for secure and independent communication between SMDs and ES, the protocol further establishes a one-to-one session key agreement mechanism and uses a Merkle tree to verify session key correctness. Formal verification with ProVerif2.05 tool confirms the protocol's security and multiple protection properties. Experimental results show that, compared with the CPPBA, ECCAS, and LBVP schemes, the protocol improves computational efficiency of batch authentication by 0.94%, 67.20%, and 49.53%, respectively. For group key agreement, the protocol achieves a 35.26% improvement in computational efficiency over existing schemes. [ABSTRACT FROM AUTHOR]