Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: d‐Electron Asymmetry‐Driven CN Coupling on Heteronuclear Dual‐Atom Catalysts for Sustainable Urea Electrosynthesis.

Title:
d‐Electron Asymmetry‐Driven CN Coupling on Heteronuclear Dual‐Atom Catalysts for Sustainable Urea Electrosynthesis.
Authors:
Jiang, Zaifu1 (AUTHOR) 200707008@jcut.edu.cn, Wang, Jingjing1 (AUTHOR), Zhang, Dingmei1 (AUTHOR), Kong, Panlong1 (AUTHOR), Zhang, Xiaotao2 (AUTHOR)
Source:
Advanced Science. 10/27/2025, Vol. 12 Issue 40, p1-8. 8p.
Database:
Academic Search Index

Weitere Informationen

The transition toward carbon‐neutral chemical manufacturing calls for innovative strategies to produce nitrogen‐based compounds with minimal environmental impact. Urea, a key nitrogen‐rich chemical, is currently synthesized via the energy‐intensive Bosch‐Meiser process, which relies heavily on fossil fuel‐derived ammonia. As a sustainable alternative, electrochemical urea synthesis (ECUS) enables the direct coupling of nitrogenous and carbonaceous precursors under ambient conditions, yet remains hampered by sluggish kinetics and poor selectivity—particularly in the critical C─N bond formation step. Here, density functional theory (DFT) calculations is integrated with data‐driven machine learning to systematically explore the activity landscape of nitrogen‐doped graphene‐supported dual‐metal‐atom catalysts (M′M@NC) for C─N coupling. A comprehensive reaction network is evaluated across 45 M′M@NC configurations, revealing three heteronuclear catalysts—VNi@NC, CoNi@NC and CoCu@NC—with consistently favorable thermodynamic and kinetic performance. Electronic structure analysis indicates that heteronuclear coordination promotes *CO activation and optimizes *NHx adsorption, facilitating C─N coupling. Leveraging symbolic regression via the sure independence screening and sparsifying operator (SISSO) algorithm, interpretable descriptors linking C─N coupling energy to atomic‐level electronic properties is established, highlighting the critical role of d‐electron asymmetry. This results uncover fundamental design principles for dual‐atom catalysts and provide a predictive framework for guiding the development of next‐generation electrocatalysts for sustainable urea synthesis. [ABSTRACT FROM AUTHOR]